1.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
2.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
3.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
4.A Propensity Score-Matched Cohort Study Comparing 3 Different Spine Pedicle Screw Fixation Methods: Freehand, Fluoroscopy-Guided, and Robot-Assisted Techniques
Yoon Ha HWANG ; Byeong-Jin HA ; Hyung Cheol KIM ; Byung Ho LEE ; Jeong-Yoon PARK ; Dong-Kyu CHIN ; Seong YI
Neurospine 2024;21(1):83-94
Objective:
This study aimed to compare the accuracy of robotic spine surgery and conventional pedicle screw fixation in lumbar degenerative disease. We evaluated clinical and radiological outcomes to demonstrate the noninferiority of robotic surgery.
Methods:
This study employed propensity score matching and included 3 groups: robot-assisted mini-open posterior lumbar interbody fusion (PLIF) (robotic surgery, RS), c-arm guided minimally invasive surgery transforaminal lumbar interbody fusion (C-arm guidance, CG), and freehand open PLIF (free of guidance, FG) (54 patients each). The mean follow-up period was 2.2 years. The preoperative spine condition was considered. Accuracy was evaluated using the Gertzbein-Robbins scale (GRS score) and Babu classification (Babu score). Radiological outcomes included adjacent segmental disease (ASD) and mechanical failure. Clinical outcomes were assessed based on the visual analogue scale, Oswestry Disability Index, 36-item Short Form health survey, and clinical ASD rate.
Results:
Accuracy was higher in the RS group (p < 0.01) than in other groups. The GRS score was lower in the CG group, whereas the Babu score was lower in the FG group compared with the RS group. No significant differences were observed in radiological and clinical outcomes among the 3 groups. Regression analysis identified preoperative facet degeneration, GRS and Babu scores as significant variables for radiological and clinical ASD. Mechanical failure was influenced by the GRS score and patients’ age.
Conclusion
This study showed the superior accuracy of robotic spine surgery compared with conventional techniques. When combined with minimally invasive surgery, robotic surgery is advantageous with reduced ligament and muscle damage associated with traditional open procedures.
5.A Propensity Score-Matched Cohort Study Comparing 3 Different Spine Pedicle Screw Fixation Methods: Freehand, Fluoroscopy-Guided, and Robot-Assisted Techniques
Yoon Ha HWANG ; Byeong-Jin HA ; Hyung Cheol KIM ; Byung Ho LEE ; Jeong-Yoon PARK ; Dong-Kyu CHIN ; Seong YI
Neurospine 2024;21(1):83-94
Objective:
This study aimed to compare the accuracy of robotic spine surgery and conventional pedicle screw fixation in lumbar degenerative disease. We evaluated clinical and radiological outcomes to demonstrate the noninferiority of robotic surgery.
Methods:
This study employed propensity score matching and included 3 groups: robot-assisted mini-open posterior lumbar interbody fusion (PLIF) (robotic surgery, RS), c-arm guided minimally invasive surgery transforaminal lumbar interbody fusion (C-arm guidance, CG), and freehand open PLIF (free of guidance, FG) (54 patients each). The mean follow-up period was 2.2 years. The preoperative spine condition was considered. Accuracy was evaluated using the Gertzbein-Robbins scale (GRS score) and Babu classification (Babu score). Radiological outcomes included adjacent segmental disease (ASD) and mechanical failure. Clinical outcomes were assessed based on the visual analogue scale, Oswestry Disability Index, 36-item Short Form health survey, and clinical ASD rate.
Results:
Accuracy was higher in the RS group (p < 0.01) than in other groups. The GRS score was lower in the CG group, whereas the Babu score was lower in the FG group compared with the RS group. No significant differences were observed in radiological and clinical outcomes among the 3 groups. Regression analysis identified preoperative facet degeneration, GRS and Babu scores as significant variables for radiological and clinical ASD. Mechanical failure was influenced by the GRS score and patients’ age.
Conclusion
This study showed the superior accuracy of robotic spine surgery compared with conventional techniques. When combined with minimally invasive surgery, robotic surgery is advantageous with reduced ligament and muscle damage associated with traditional open procedures.
6.A Propensity Score-Matched Cohort Study Comparing 3 Different Spine Pedicle Screw Fixation Methods: Freehand, Fluoroscopy-Guided, and Robot-Assisted Techniques
Yoon Ha HWANG ; Byeong-Jin HA ; Hyung Cheol KIM ; Byung Ho LEE ; Jeong-Yoon PARK ; Dong-Kyu CHIN ; Seong YI
Neurospine 2024;21(1):83-94
Objective:
This study aimed to compare the accuracy of robotic spine surgery and conventional pedicle screw fixation in lumbar degenerative disease. We evaluated clinical and radiological outcomes to demonstrate the noninferiority of robotic surgery.
Methods:
This study employed propensity score matching and included 3 groups: robot-assisted mini-open posterior lumbar interbody fusion (PLIF) (robotic surgery, RS), c-arm guided minimally invasive surgery transforaminal lumbar interbody fusion (C-arm guidance, CG), and freehand open PLIF (free of guidance, FG) (54 patients each). The mean follow-up period was 2.2 years. The preoperative spine condition was considered. Accuracy was evaluated using the Gertzbein-Robbins scale (GRS score) and Babu classification (Babu score). Radiological outcomes included adjacent segmental disease (ASD) and mechanical failure. Clinical outcomes were assessed based on the visual analogue scale, Oswestry Disability Index, 36-item Short Form health survey, and clinical ASD rate.
Results:
Accuracy was higher in the RS group (p < 0.01) than in other groups. The GRS score was lower in the CG group, whereas the Babu score was lower in the FG group compared with the RS group. No significant differences were observed in radiological and clinical outcomes among the 3 groups. Regression analysis identified preoperative facet degeneration, GRS and Babu scores as significant variables for radiological and clinical ASD. Mechanical failure was influenced by the GRS score and patients’ age.
Conclusion
This study showed the superior accuracy of robotic spine surgery compared with conventional techniques. When combined with minimally invasive surgery, robotic surgery is advantageous with reduced ligament and muscle damage associated with traditional open procedures.
7.A Propensity Score-Matched Cohort Study Comparing 3 Different Spine Pedicle Screw Fixation Methods: Freehand, Fluoroscopy-Guided, and Robot-Assisted Techniques
Yoon Ha HWANG ; Byeong-Jin HA ; Hyung Cheol KIM ; Byung Ho LEE ; Jeong-Yoon PARK ; Dong-Kyu CHIN ; Seong YI
Neurospine 2024;21(1):83-94
Objective:
This study aimed to compare the accuracy of robotic spine surgery and conventional pedicle screw fixation in lumbar degenerative disease. We evaluated clinical and radiological outcomes to demonstrate the noninferiority of robotic surgery.
Methods:
This study employed propensity score matching and included 3 groups: robot-assisted mini-open posterior lumbar interbody fusion (PLIF) (robotic surgery, RS), c-arm guided minimally invasive surgery transforaminal lumbar interbody fusion (C-arm guidance, CG), and freehand open PLIF (free of guidance, FG) (54 patients each). The mean follow-up period was 2.2 years. The preoperative spine condition was considered. Accuracy was evaluated using the Gertzbein-Robbins scale (GRS score) and Babu classification (Babu score). Radiological outcomes included adjacent segmental disease (ASD) and mechanical failure. Clinical outcomes were assessed based on the visual analogue scale, Oswestry Disability Index, 36-item Short Form health survey, and clinical ASD rate.
Results:
Accuracy was higher in the RS group (p < 0.01) than in other groups. The GRS score was lower in the CG group, whereas the Babu score was lower in the FG group compared with the RS group. No significant differences were observed in radiological and clinical outcomes among the 3 groups. Regression analysis identified preoperative facet degeneration, GRS and Babu scores as significant variables for radiological and clinical ASD. Mechanical failure was influenced by the GRS score and patients’ age.
Conclusion
This study showed the superior accuracy of robotic spine surgery compared with conventional techniques. When combined with minimally invasive surgery, robotic surgery is advantageous with reduced ligament and muscle damage associated with traditional open procedures.
8.A Propensity Score-Matched Cohort Study Comparing 3 Different Spine Pedicle Screw Fixation Methods: Freehand, Fluoroscopy-Guided, and Robot-Assisted Techniques
Yoon Ha HWANG ; Byeong-Jin HA ; Hyung Cheol KIM ; Byung Ho LEE ; Jeong-Yoon PARK ; Dong-Kyu CHIN ; Seong YI
Neurospine 2024;21(1):83-94
Objective:
This study aimed to compare the accuracy of robotic spine surgery and conventional pedicle screw fixation in lumbar degenerative disease. We evaluated clinical and radiological outcomes to demonstrate the noninferiority of robotic surgery.
Methods:
This study employed propensity score matching and included 3 groups: robot-assisted mini-open posterior lumbar interbody fusion (PLIF) (robotic surgery, RS), c-arm guided minimally invasive surgery transforaminal lumbar interbody fusion (C-arm guidance, CG), and freehand open PLIF (free of guidance, FG) (54 patients each). The mean follow-up period was 2.2 years. The preoperative spine condition was considered. Accuracy was evaluated using the Gertzbein-Robbins scale (GRS score) and Babu classification (Babu score). Radiological outcomes included adjacent segmental disease (ASD) and mechanical failure. Clinical outcomes were assessed based on the visual analogue scale, Oswestry Disability Index, 36-item Short Form health survey, and clinical ASD rate.
Results:
Accuracy was higher in the RS group (p < 0.01) than in other groups. The GRS score was lower in the CG group, whereas the Babu score was lower in the FG group compared with the RS group. No significant differences were observed in radiological and clinical outcomes among the 3 groups. Regression analysis identified preoperative facet degeneration, GRS and Babu scores as significant variables for radiological and clinical ASD. Mechanical failure was influenced by the GRS score and patients’ age.
Conclusion
This study showed the superior accuracy of robotic spine surgery compared with conventional techniques. When combined with minimally invasive surgery, robotic surgery is advantageous with reduced ligament and muscle damage associated with traditional open procedures.
9.Outcomes in Refractory Diffuse Large B-Cell Lymphoma: Results from Two Prospective Korean Cohorts
Jun Ho YI ; Seong Hyun JEONG ; Seok Jin KIM ; Dok Hyun YOON ; Hye Jin KANG ; Youngil KOH ; Jin Seok KIM ; Won-Sik LEE ; Deok-Hwan YANG ; Young Rok DO ; Min Kyoung KIM ; Kwai Han YOO ; Yoon Seok CHOI ; Whan Jung YUN ; Yong PARK ; Jae-Cheol JO ; Hyeon-Seok EOM ; Jae-Yong KWAK ; Ho-Jin SHIN ; Byeong Bae PARK ; Seong Yoon YI ; Ji-Hyun KWON ; Sung Yong OH ; Hyo Jung KIM ; Byeong Seok SOHN ; Jong Ho WON ; Dae-Sik HONG ; Ho-Sup LEE ; Gyeong-Won LEE ; Cheolwon SUH ; Won Seog KIM
Cancer Research and Treatment 2023;55(1):325-333
Purpose:
Diffuse large B-cell lymphoma (DLBCL) is the most common hematologic malignancy worldwide. Although substantial improvement has been achieved by the frontline rituximab-based chemoimmunotherapy, up to 40%-50% of patients will eventually have relapsed or refractory disease, whose prognosis is extremely dismal.
Materials and Methods:
We have carried out two prospective cohort studies that include over 1,500 DLBCL patients treated with rituximab plus CHOP (#NCT01202448 and #NCT02474550). In the current report, we describe the outcomes of refractory DLBCL patients. Patients were defined to have refractory DLBCL if they met one of the followings, not achieving at least partial response after 4 or more cycles of R-CHOP; not achieving at least partial response after 2 or more cycles of salvage therapy; progressive disease within 12 months after autologous stem cell transplantation.
Results:
Among 1,581 patients, a total of 260 patients met the criteria for the refractory disease after a median time to progression of 9.1 months. The objective response rate of salvage treatment was 26.4%, and the complete response rate was 9.6%. The median overall survival (OS) was 7.5 months (95% confidence interval, 6.4 to 8.6), and the 2-year survival rate was 22.1%±2.8%. The median OS for each refractory category was not significantly different (p=0.529).
Conclusion
In line with the previous studies, the outcomes of refractory DLBCL patients were extremely poor, which necessitates novel approaches for this population.
10.Early Neurodevelopmental Assessments of Neonates Discharged From the Neonatal Intensive Care Unit: A Physiatrist’s Perspective
Sung Eun HYUN ; Jeong-Yi KWON ; Bo Young HONG ; Jin A YOON ; Ja Young CHOI ; Jiyeon HONG ; Seong-Eun KOH ; Eun Jae KO ; Seung Ki KIM ; Min-Keun SONG ; Sook-Hee YI ; AhRa CHO ; Bum Sun KWON
Annals of Rehabilitation Medicine 2023;47(3):147-161
The survival rate of children admitted in the neonatal intensive care unit (NICU) after birth is on the increase; hence, proper evaluation and care of their neurodevelopment has become an important issue. Neurodevelopmental assessments of individual domains regarding motor, language, cognition, and sensory perception are crucial in planning prompt interventions for neonates requiring immediate support and rehabilitation treatment. These assessments are essential for identifying areas of weakness and designing targeted interventions to improve future functional outcomes and the quality of lives for both the infants and their families. However, initial stratification of risk to select those who are in danger of neurodevelopmental disorders is also important in terms of cost-effectiveness. Efficient and robust functional evaluations to recognize early signs of developmental disorders will help NICU graduates receive interventions and enhance functional capabilities if needed. Several age-dependent, domain-specific neurodevelopmental assessment tools are available; therefore, this review summarizes the characteristics of these tools and aims to develop multidimensional, standardized, and regular follow-up plans for NICU graduates in Korea.

Result Analysis
Print
Save
E-mail