1.Erratum to "Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy" Biomol Ther 32(5), 556-567 (2024)
Jae-Hyeon JEONG ; Dae-Joon KIM ; Seong-Jin HONG ; Jae-Hee AHN ; Dong-Ju LEE ; Ah-Ra JANG ; Sungyun KIM ; Hyun-Jong CHO ; Jae-Young LEE ; Jong-Hwan PARK ; Young-Min KIM ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(1):233-233
2.Erratum to "Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy" Biomol Ther 32(5), 556-567 (2024)
Jae-Hyeon JEONG ; Dae-Joon KIM ; Seong-Jin HONG ; Jae-Hee AHN ; Dong-Ju LEE ; Ah-Ra JANG ; Sungyun KIM ; Hyun-Jong CHO ; Jae-Young LEE ; Jong-Hwan PARK ; Young-Min KIM ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(1):233-233
3.Erratum to "Investigating the Immune-Stimulating Potential of β-Glucan from Aureobasidium pullulans in Cancer Immunotherapy" Biomol Ther 32(5), 556-567 (2024)
Jae-Hyeon JEONG ; Dae-Joon KIM ; Seong-Jin HONG ; Jae-Hee AHN ; Dong-Ju LEE ; Ah-Ra JANG ; Sungyun KIM ; Hyun-Jong CHO ; Jae-Young LEE ; Jong-Hwan PARK ; Young-Min KIM ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(1):233-233
4.A Case Study on the Effectiveness of tDCS to Reduce CyberSickness in Subjects with Dizziness
Chang Ju KIM ; Yoon Tae HWANG ; Yu Min KO ; Seong Ho YUN ; Sang Seok YEO
Journal of Korean Physical Therapy 2024;36(1):39-44
Purpose:
Cybersickness is a type of motion sickness induced by virtual reality (VR) or augmented reality (AR) environments that presents symptoms including nausea, dizziness, and headaches. This study aimed to investigate how cathodal transcranial direct current stimulation (tDCS) alleviates motion sickness symptoms and modulates brain activity in individuals experiencing cybersickness after exposure to a VR environment.
Methods:
This study was performed on two groups of healthy adults with cybersickness symptoms. Subjects were randomly assigned to receive either cathodal tDCS intervention or sham tDCS intervention. Brain activity during VR stimulation was measured by 38-channel functional near-infrared spectroscopy (fNIRS). tDCS was administered to the right temporoparietal junction (TPJ) for 20 minutes at an intensity of 2mA, and the severity of cybersickness was assessed pre- and post-intervention using a simulator sickness questionnaire (SSQ).Result: Following the experiment, cybersickness symptoms in subjects who received cathodal tDCS intervention were reduced based on SSQ scores, whereas those who received sham tDCS showed no significant change. fNIRS analysis revealed that tDCS significantly diminished cortical activity in subjects with high activity in temporal and parietal lobes, whereas high cortical activity was maintained in these regions after intervention in subjects who received sham tDCS.
Conclusion
These findings suggest that cathodal tDCS applied to the right TPJ region in young adults experiencing cybersickness effectively reduces motion sickness induced by VR environments.
5.Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies
Seong Min CHOI ; Ju-Hee LEE ; Soyeon KO ; Soon-Sun HONG ; Hyo-Eon JIN
Biomolecules & Therapeutics 2024;32(6):708-722
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges.Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology;however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
6.A Case Study on the Effectiveness of tDCS to Reduce CyberSickness in Subjects with Dizziness
Chang Ju KIM ; Yoon Tae HWANG ; Yu Min KO ; Seong Ho YUN ; Sang Seok YEO
Journal of Korean Physical Therapy 2024;36(1):39-44
Purpose:
Cybersickness is a type of motion sickness induced by virtual reality (VR) or augmented reality (AR) environments that presents symptoms including nausea, dizziness, and headaches. This study aimed to investigate how cathodal transcranial direct current stimulation (tDCS) alleviates motion sickness symptoms and modulates brain activity in individuals experiencing cybersickness after exposure to a VR environment.
Methods:
This study was performed on two groups of healthy adults with cybersickness symptoms. Subjects were randomly assigned to receive either cathodal tDCS intervention or sham tDCS intervention. Brain activity during VR stimulation was measured by 38-channel functional near-infrared spectroscopy (fNIRS). tDCS was administered to the right temporoparietal junction (TPJ) for 20 minutes at an intensity of 2mA, and the severity of cybersickness was assessed pre- and post-intervention using a simulator sickness questionnaire (SSQ).Result: Following the experiment, cybersickness symptoms in subjects who received cathodal tDCS intervention were reduced based on SSQ scores, whereas those who received sham tDCS showed no significant change. fNIRS analysis revealed that tDCS significantly diminished cortical activity in subjects with high activity in temporal and parietal lobes, whereas high cortical activity was maintained in these regions after intervention in subjects who received sham tDCS.
Conclusion
These findings suggest that cathodal tDCS applied to the right TPJ region in young adults experiencing cybersickness effectively reduces motion sickness induced by VR environments.
7.Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies
Seong Min CHOI ; Ju-Hee LEE ; Soyeon KO ; Soon-Sun HONG ; Hyo-Eon JIN
Biomolecules & Therapeutics 2024;32(6):708-722
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges.Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology;however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
8.A Case Study on the Effectiveness of tDCS to Reduce CyberSickness in Subjects with Dizziness
Chang Ju KIM ; Yoon Tae HWANG ; Yu Min KO ; Seong Ho YUN ; Sang Seok YEO
Journal of Korean Physical Therapy 2024;36(1):39-44
Purpose:
Cybersickness is a type of motion sickness induced by virtual reality (VR) or augmented reality (AR) environments that presents symptoms including nausea, dizziness, and headaches. This study aimed to investigate how cathodal transcranial direct current stimulation (tDCS) alleviates motion sickness symptoms and modulates brain activity in individuals experiencing cybersickness after exposure to a VR environment.
Methods:
This study was performed on two groups of healthy adults with cybersickness symptoms. Subjects were randomly assigned to receive either cathodal tDCS intervention or sham tDCS intervention. Brain activity during VR stimulation was measured by 38-channel functional near-infrared spectroscopy (fNIRS). tDCS was administered to the right temporoparietal junction (TPJ) for 20 minutes at an intensity of 2mA, and the severity of cybersickness was assessed pre- and post-intervention using a simulator sickness questionnaire (SSQ).Result: Following the experiment, cybersickness symptoms in subjects who received cathodal tDCS intervention were reduced based on SSQ scores, whereas those who received sham tDCS showed no significant change. fNIRS analysis revealed that tDCS significantly diminished cortical activity in subjects with high activity in temporal and parietal lobes, whereas high cortical activity was maintained in these regions after intervention in subjects who received sham tDCS.
Conclusion
These findings suggest that cathodal tDCS applied to the right TPJ region in young adults experiencing cybersickness effectively reduces motion sickness induced by VR environments.
9.Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies
Seong Min CHOI ; Ju-Hee LEE ; Soyeon KO ; Soon-Sun HONG ; Hyo-Eon JIN
Biomolecules & Therapeutics 2024;32(6):708-722
Bispecific antibodies represent a significant advancement in therapeutic antibody engineering, offering the ability to simultaneously target two distinct antigens. This dual-targeting capability enhances therapeutic efficacy, especially in complex diseases, such as cancer and autoimmune disorders, where drug resistance and incomplete target coverage are prevalent challenges.Bispecific antibodies facilitate immune cell engagement and disrupt multiple signaling pathways, providing a more comprehensive treatment approach than traditional monoclonal antibodies. However, the intricate structure of bispecific antibodies introduces unique pharmacokinetic challenges, including issues related to their absorption, distribution, metabolism, and excretion, which can significantly affect their efficacy and safety. This review provides an in-depth analysis of the structural design, mechanisms of action, and pharmacokinetics of the currently approved bispecific antibodies. It also highlights the engineering innovations that have been implemented to overcome these challenges, such as Fc modifications and advanced dimerization techniques, which enhance the stability and half-life of bispecific antibodies. Significant progress has been made in bispecific antibody technology;however, further research is necessary to broaden their clinical applications, enhance their safety profiles, and optimize their incorporation into combination therapies. Continuous advancements in this field are expected to enable bispecific antibodies to provide more precise and effective therapeutic strategies for a range of complex diseases, ultimately improving patient outcomes and advancing precision medicine.
10.A Case Study on the Effectiveness of tDCS to Reduce CyberSickness in Subjects with Dizziness
Chang Ju KIM ; Yoon Tae HWANG ; Yu Min KO ; Seong Ho YUN ; Sang Seok YEO
Journal of Korean Physical Therapy 2024;36(1):39-44
Purpose:
Cybersickness is a type of motion sickness induced by virtual reality (VR) or augmented reality (AR) environments that presents symptoms including nausea, dizziness, and headaches. This study aimed to investigate how cathodal transcranial direct current stimulation (tDCS) alleviates motion sickness symptoms and modulates brain activity in individuals experiencing cybersickness after exposure to a VR environment.
Methods:
This study was performed on two groups of healthy adults with cybersickness symptoms. Subjects were randomly assigned to receive either cathodal tDCS intervention or sham tDCS intervention. Brain activity during VR stimulation was measured by 38-channel functional near-infrared spectroscopy (fNIRS). tDCS was administered to the right temporoparietal junction (TPJ) for 20 minutes at an intensity of 2mA, and the severity of cybersickness was assessed pre- and post-intervention using a simulator sickness questionnaire (SSQ).Result: Following the experiment, cybersickness symptoms in subjects who received cathodal tDCS intervention were reduced based on SSQ scores, whereas those who received sham tDCS showed no significant change. fNIRS analysis revealed that tDCS significantly diminished cortical activity in subjects with high activity in temporal and parietal lobes, whereas high cortical activity was maintained in these regions after intervention in subjects who received sham tDCS.
Conclusion
These findings suggest that cathodal tDCS applied to the right TPJ region in young adults experiencing cybersickness effectively reduces motion sickness induced by VR environments.

Result Analysis
Print
Save
E-mail