1.Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice
Hua CAI ; Seong Mi LEE ; Yura CHOI ; Bomlee LEE ; Soo Jung IM ; Dong Hyeon KIM ; Hyung Jun CHOI ; Jin Hee KIM ; Yeni KIM ; Boo Ahn SHIN ; Songhee JEON
Psychiatry Investigation 2025;22(1):10-25
Objective:
This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods:
Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO.
Results:
Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO.
Conclusion
Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
2.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
3.Virtual Reality-Based Cognitive Behavior Therapy for Major Depressive Disorder: An Alternative to Pharmacotherapy for Reducing Suicidality
Miwoo LEE ; Sooah JANG ; Hyun Kyung SHIN ; Sun-Woo CHOI ; Hyung Taek KIM ; Jihee OH ; Ji Hye KWON ; Youngjun CHOI ; Suzi KANG ; In-Seong BACK ; Jae-Ki KIM ; San LEE ; Jeong-Ho SEOK
Yonsei Medical Journal 2025;66(1):25-36
Purpose:
Cognitive behavioral therapy (CBT) has long been recognized as an effective treatment for depression and suicidality.Virtual reality (VR) technology is widely used for cognitive training for conditions such as anxiety disorder and post-traumatic stress disorder, but little research has considered VR-based CBT for depressive symptoms and suicidality. We tested the effectiveness and safety of a VR-based CBT program for depressive disorders.
Materials and Methods:
We recruited 57 participants from May 2022 through February 2023 using online advertisements. This multi-center, assessor-blinded, randomized, controlled exploratory trial used two groups: VR treatment group and treat as usual (TAU) group. VR treatment group received a VR mental health training/education program. TAU group received standard pharmacotherapy. Assessments were conducted at baseline, immediately after the 6-week treatment period, and 4 weeks after the end of the treatment period in each group.
Results:
Depression scores decreased significantly over time in both VR treatment and TAU groups, with no differences between the two groups. The suicidality score decreased significantly only in VR group. No group differences were found in the remission or response rate for depression, perceived stress, or clinical severity. No adverse events or motion sickness occurred during the VR treatment program.
Conclusion
VR CBT treatment for major depressive disorder has the potential to be equivalent to the gold-standard pharmacotherapy in reducing depressive symptoms, suicidality, and related clinical symptoms, with no difference in improvement found in this study. Thus, VR-based CBT might be an effective alternative to pharmacotherapy for depressive disorders.
4.Clinical Practice Guidelines for Dementia: Recommendations for Cholinesterase Inhibitors and Memantine
Yeshin KIM ; Dong Woo KANG ; Geon Ha KIM ; Ko Woon KIM ; Hee-Jin KIM ; Seunghee NA ; Kee Hyung PARK ; Young Ho PARK ; Gihwan BYEON ; Jeewon SUH ; Joon Hyun SHIN ; YongSoo SHIM ; YoungSoon YANG ; Yoo Hyun UM ; Seong-il OH ; Sheng-Min WANG ; Bora YOON ; Sun Min LEE ; Juyoun LEE ; Jin San LEE ; Jae-Sung LIM ; Young Hee JUNG ; Juhee CHIN ; Hyemin JANG ; Miyoung CHOI ; Yun Jeong HONG ; Hak Young RHEE ; Jae-Won JANG ;
Dementia and Neurocognitive Disorders 2025;24(1):1-23
Background:
and Purpose: This clinical practice guideline provides evidence-based recommendations for treatment of dementia, focusing on cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists for Alzheimer’s disease (AD) and other types of dementia.
Methods:
Using the Population, Intervention, Comparison, Outcomes (PICO) framework, we developed key clinical questions and conducted systematic literature reviews. A multidisciplinary panel of experts, organized by the Korean Dementia Association, evaluated randomized controlled trials and observational studies. Recommendations were graded for evidence quality and strength using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.
Results:
Three main recommendations are presented: (1) For AD, cholinesterase inhibitors (donepezil, rivastigmine, galantamine) are strongly recommended for improving cognition and daily function based on moderate evidence; (2) Cholinesterase inhibitors are conditionally recommended for vascular dementia and Parkinson’s disease dementia, with a strong recommendation for Lewy body dementia; (3) For moderate to severe AD, NMDA receptor antagonist (memantine) is strongly recommended, demonstrating significant cognitive and functional improvements. Both drug classes showed favorable safety profiles with manageable side effects.
Conclusions
This guideline offers standardized, evidence-based pharmacologic recommendations for dementia management, with specific guidance on cholinesterase inhibitors and NMDA receptor antagonists. It aims to support clinical decision-making and improve patient outcomes in dementia care. Further updates will address emerging treatments, including amyloid-targeting therapies, to reflect advances in dementia management.
5.Comparison of initial treatments for resectable hepatocellular carcinoma within Milan criteria:an observational study based on a nationwide survey
Sang Jin KIM ; Woo Kyoung JEONG ; Hyung-Joon HAN ; Gyu-Seong CHOI ; Kyun-Hwan KIM ; Jongman KIM
Annals of Surgical Treatment and Research 2025;108(5):279-294
Purpose:
Treatment options for hepatocellular carcinoma (HCC) vary according to known guidelines among liver resection (LR), liver transplantation (LT), radiofrequency ablation (RFA), and transarterial chemoembolization (TACE). This study aimed to compare the outcomes of initial treatment for patients with resectable HCC within Milan criteria (MC) via nationwide data.
Methods:
Patients with resectable HCC (Child-Pugh class A; platelet count, ≥100,000/μL) within MC from the Korean Liver Cancer Association databank were analyzed, retrospectively. Outcomes according to initial treatment and subgroups according to tumor size and number were analyzed. Overall survival (OS) rates after initial treatment were compared.
Results:
A total of 3,241 patients who underwent LR (n = 1,371), LT (n = 12), RFA (n = 679), or TACE (n = 1,179) were included. The 5-year OS rates differed significantly between the groups (P < 0.05), except for LT (LR, 84.9%; LT, 82.5%;RFA, 76.2%; and TACE, 59.9%). For patients with a single tumor of any size, the 5-year OS rates of the LR group were significantly higher than RFA and TACE groups. For patients with multiple tumors, the 5-year OS rates were 78.2%, 100%, 74.3%, and 53.0% for the LR, LT, RFA, and TACE groups, respectively, but without significant difference between LR and RFA (P = 0.86).
Conclusion
For resectable HCC within MC, the LR had the highest OS rate for a single tumor of any size. LR and RFA showed no significant differences in OS rate for multiple tumors. LR has a much more optimistic outlook for HCC within MC.
6.Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice
Hua CAI ; Seong Mi LEE ; Yura CHOI ; Bomlee LEE ; Soo Jung IM ; Dong Hyeon KIM ; Hyung Jun CHOI ; Jin Hee KIM ; Yeni KIM ; Boo Ahn SHIN ; Songhee JEON
Psychiatry Investigation 2025;22(1):10-25
Objective:
This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods:
Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO.
Results:
Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO.
Conclusion
Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
7.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
8.Virtual Reality-Based Cognitive Behavior Therapy for Major Depressive Disorder: An Alternative to Pharmacotherapy for Reducing Suicidality
Miwoo LEE ; Sooah JANG ; Hyun Kyung SHIN ; Sun-Woo CHOI ; Hyung Taek KIM ; Jihee OH ; Ji Hye KWON ; Youngjun CHOI ; Suzi KANG ; In-Seong BACK ; Jae-Ki KIM ; San LEE ; Jeong-Ho SEOK
Yonsei Medical Journal 2025;66(1):25-36
Purpose:
Cognitive behavioral therapy (CBT) has long been recognized as an effective treatment for depression and suicidality.Virtual reality (VR) technology is widely used for cognitive training for conditions such as anxiety disorder and post-traumatic stress disorder, but little research has considered VR-based CBT for depressive symptoms and suicidality. We tested the effectiveness and safety of a VR-based CBT program for depressive disorders.
Materials and Methods:
We recruited 57 participants from May 2022 through February 2023 using online advertisements. This multi-center, assessor-blinded, randomized, controlled exploratory trial used two groups: VR treatment group and treat as usual (TAU) group. VR treatment group received a VR mental health training/education program. TAU group received standard pharmacotherapy. Assessments were conducted at baseline, immediately after the 6-week treatment period, and 4 weeks after the end of the treatment period in each group.
Results:
Depression scores decreased significantly over time in both VR treatment and TAU groups, with no differences between the two groups. The suicidality score decreased significantly only in VR group. No group differences were found in the remission or response rate for depression, perceived stress, or clinical severity. No adverse events or motion sickness occurred during the VR treatment program.
Conclusion
VR CBT treatment for major depressive disorder has the potential to be equivalent to the gold-standard pharmacotherapy in reducing depressive symptoms, suicidality, and related clinical symptoms, with no difference in improvement found in this study. Thus, VR-based CBT might be an effective alternative to pharmacotherapy for depressive disorders.
9.Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice
Hua CAI ; Seong Mi LEE ; Yura CHOI ; Bomlee LEE ; Soo Jung IM ; Dong Hyeon KIM ; Hyung Jun CHOI ; Jin Hee KIM ; Yeni KIM ; Boo Ahn SHIN ; Songhee JEON
Psychiatry Investigation 2025;22(1):10-25
Objective:
This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods:
Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO.
Results:
Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO.
Conclusion
Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
10.Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis
Na Kyeong PARK ; Yun-Gwi PARK ; Ji-Hee CHOI ; Hyung Kyu CHOI ; Sung-Hwan MOON ; Soon-Jung PARK ; Seong Woo CHOI
The Korean Journal of Physiology and Pharmacology 2025;29(2):257-269
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs—E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine—on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses.Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.

Result Analysis
Print
Save
E-mail