1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
		                        		
		                        		
		                        		
		                        	
2.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
		                        		
		                        		
		                        		
		                        	
3.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
		                        		
		                        		
		                        		
		                        	
4.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
5.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
6.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
7.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
8.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
9.A Multimodal Ensemble Deep Learning Model for Functional Outcome Prognosis of Stroke Patients
Hye-Soo JUNG ; Eun-Jae LEE ; Dae-Il CHANG ; Han Jin CHO ; Jun LEE ; Jae-Kwan CHA ; Man-Seok PARK ; Kyung Ho YU ; Jin-Man JUNG ; Seong Hwan AHN ; Dong-Eog KIM ; Ju Hun LEE ; Keun-Sik HONG ; Sung-Il SOHN ; Kyung-Pil PARK ; Sun U. KWON ; Jong S. KIM ; Jun Young CHANG ; Bum Joon KIM ; Dong-Wha KANG ;
Journal of Stroke 2024;26(2):312-320
		                        		
		                        			 Background:
		                        			and Purpose The accurate prediction of functional outcomes in patients with acute ischemic stroke (AIS) is crucial for informed clinical decision-making and optimal resource utilization. As such, this study aimed to construct an ensemble deep learning model that integrates multimodal imaging and clinical data to predict the 90-day functional outcomes after AIS. 
		                        		
		                        			Methods:
		                        			We used data from the Korean Stroke Neuroimaging Initiative database, a prospective multicenter stroke registry to construct an ensemble model integrated individual 3D convolutional neural networks for diffusion-weighted imaging and fluid-attenuated inversion recovery (FLAIR), along with a deep neural network for clinical data, to predict 90-day functional independence after AIS using a modified Rankin Scale (mRS) of 3–6. To evaluate the performance of the ensemble model, we compared the area under the curve (AUC) of the proposed method with that of individual models trained on each modality to identify patients with AIS with an mRS score of 3–6. 
		                        		
		                        			Results:
		                        			Of the 2,606 patients with AIS, 993 (38.1%) achieved an mRS score of 3–6 at 90 days post-stroke. Our model achieved AUC values of 0.830 (standard cross-validation [CV]) and 0.779 (time-based CV), which significantly outperformed the other models relying on single modalities: b-value of 1,000 s/mm2 (P<0.001), apparent diffusion coefficient map (P<0.001), FLAIR (P<0.001), and clinical data (P=0.004). 
		                        		
		                        			Conclusion
		                        			The integration of multimodal imaging and clinical data resulted in superior prediction of the 90-day functional outcomes in AIS patients compared to the use of a single data modality. 
		                        		
		                        		
		                        		
		                        	
10.Exploring the Expression and Function of T Cell Surface Markers Identified through Cellular Indexing of Transcriptomes and Epitopes by Sequencing
Joon Yeon HWANG ; Youngtaek KIM ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(9):544-555
		                        		
		                        			 Purpose:
		                        			By utilizing both protein and mRNA expression patterns, we can identify more detailed and diverse immune cells, providing insights into understanding the complex immune landscape in cancer ecosystems. 
		                        		
		                        			Materials and Methods:
		                        			This study was performed by obtaining publicly available Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data of peripheral blood mononuclear cells (PBMCs) from the Gene Expression Omnibus database. A total of 94674 total cells were analyzed, of which 32412 were T cells. There were 228 protein features and 16262 mRNA features in the data.The Seurat package was used for quality control and preprocessing, principal component analysis was performed, and Uniform Manifold Approximation and Projection was used to visualize the clusters. Protein and mRNA levels in the CITE-seq were analyzed. 
		                        		
		                        			Results:
		                        			We observed that a subset of T cells in the clusters generated at the protein level divided better. By identifying mRNA markers that were highly correlated with the CD4 and CD8 proteins and cross-validating CD26 and CD99 markers using flow cytometry, we found that CD4 + and CD8+ T cells were better discriminated in PBMCs. Weighted Nearest Neighbor clustering results identified a previously unobserved T cell subset. 
		                        		
		                        			Conclusion
		                        			In this study, we used CITE-seq data to confirm that protein expression patterns could be used to identify cells more precisely. These findings will improve our understanding of the heterogeneity of immune cells in the future and provide valuable insights into the complexity of the immune response in health and disease. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail