1.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
2.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
3.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
4.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
5.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
6.Influence of an abnormal ankle-brachial index on ischemic and bleeding events in patients undergoing percutaneous coronary intervention
Hangyul KIM ; Seung Do LEE ; Hyo Jin LEE ; Hye Ree KIM ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin-Yong HWANG ; Jong-Hwa AHN ; Yongwhi PARK ; Young-Hoon JEONG ; Jeong Rang PARK ; Min Gyu KANG
The Korean Journal of Internal Medicine 2023;38(3):372-381
Background/Aims:
Bleeding events after percutaneous coronary intervention (PCI) have important prognostic implications. Data on the influence of an abnormal ankle-brachial index (ABI) on both ischemic and bleeding events in patients undergoing PCI are limited.
Methods:
We included patients who underwent PCI with available ABI data (abnormal ABI, ≤ 0.9 or > 1.4). The primary endpoint was the composite of all-cause death, myocardial infarction (MI), stroke, and major bleeding.
Results:
Among 4,747 patients, an abnormal ABI was observed in 610 patients (12.9%). During follow-up (median, 31 months), the 5-year cumulative incidence of adverse clinical events was higher in the abnormal ABI group than in the normal ABI group: primary endpoint (36.0% vs. 14.5%, log-rank test, p < 0.001); all-cause death (19.4% vs. 5.1%, log-rank test, p < 0.001); MI (6.3% vs. 4.1%, log-rank test, p = 0.013); stroke (6.2% vs. 2.7%, log-rank test, p = 0.001); and major bleeding (8.9% vs. 3.7%, log-rank test, p < 0.001). An abnormal ABI was an independent risk factor for all-cause death (hazard ratio [HR], 3.05; p < 0.001), stroke (HR, 1.79; p = 0.042), and major bleeding (HR, 1.61; p = 0.034).
Conclusions
An abnormal ABI is a risk factor for both ischemic and bleeding events after PCI. Our study findings may be helpful in determining the optimal method for secondary prevention after PCI.
7.Rationale and Design of the High Platelet Inhibition with Ticagrelor to Improve Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction (HEALING-AMI) Trial
Yongwhi PARK ; Si Wan CHOI ; Ju Hyeon OH ; Eun Seok SHIN ; Sang Yeub LEE ; Jeongsu KIM ; Weon KIM ; Jeong Won SUH ; Dong Heon YANG ; Young Joon HONG ; Mark Y CHAN ; Jin Sin KOH ; Jin Yong HWANG ; Jae Hyeong PARK ; Young Hoon JEONG ;
Korean Circulation Journal 2019;49(7):586-599
BACKGROUND AND OBJECTIVES: Impaired recovery from left ventricular (LV) dysfunction is a major prognostic factor after myocardial infarction (MI). Because P2Y12 receptor blockade inhibits myocardial injury, ticagrelor with off-target properties may have myocardial protection over clopidogrel. In animal models, ticagrelor vs. clopidogrel protects myocardium against reperfusion injury and improves remodeling after MI. We aimed to investigate the effect of ticagrelor on sequential myocardial remodeling process after MI. METHODS: High platelet inhibition with ticagrelor to improve LV remodeling in patients with ST-segment elevation MI (HEALING-AMI) is an investigator-initiated, randomized, open-label, assessor-blinded, multi-center trial done at 10 sites in Korea. Patients will be enrolled if they have ST-segment elevation MI (STEMI) treated with primary percutaneous coronary intervention and a planned duration of dual antiplatelet treatment of at least 6 months. Screened patients will be randomly assigned (1:1) using an internet-based randomization with a computer-generated blocking with stratification across study sites to either ticagrelor or clopidogrel treatment. The co-primary primary endpoints are LV remodeling index with three-dimensional echocardiography and the level of N-terminal prohormone B-type natriuretic peptide (NT-proBNP) at 6 months representing post-MI remodeling processes. Changes of LV end-systolic/diastolic volume indices and LV ejection fraction between baseline and 6-month follow-up will be also evaluated. Analysis is per protocol. CONCLUSIONS: HEALING-AMI is testing the effect of ticagrelor in reducing adverse LV remodeling following STEMI. Our trial would show the benefit of ticagrelor vs. clopidogrel related to the recovery of post-MI LV dysfunction beyond potent platelet inhibition. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02224534
Blood Platelets
;
Echocardiography, Three-Dimensional
;
Follow-Up Studies
;
Humans
;
Korea
;
Models, Animal
;
Myocardial Infarction
;
Myocardium
;
Natriuretic Peptide, Brain
;
Percutaneous Coronary Intervention
;
Random Allocation
;
Reperfusion Injury
;
Ventricular Remodeling
8.Rationale and Design of the High Platelet Inhibition with Ticagrelor to Improve Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction (HEALING-AMI) Trial
Yongwhi PARK ; Si Wan CHOI ; Ju Hyeon OH ; Eun Seok SHIN ; Sang Yeub LEE ; Jeongsu KIM ; Weon KIM ; Jeong Won SUH ; Dong Heon YANG ; Young Joon HONG ; Mark Y CHAN ; Jin Sin KOH ; Jin Yong HWANG ; Jae Hyeong PARK ; Young Hoon JEONG ;
Korean Circulation Journal 2019;49(7):586-599
BACKGROUND AND OBJECTIVES:
Impaired recovery from left ventricular (LV) dysfunction is a major prognostic factor after myocardial infarction (MI). Because P2Y12 receptor blockade inhibits myocardial injury, ticagrelor with off-target properties may have myocardial protection over clopidogrel. In animal models, ticagrelor vs. clopidogrel protects myocardium against reperfusion injury and improves remodeling after MI. We aimed to investigate the effect of ticagrelor on sequential myocardial remodeling process after MI.
METHODS:
High platelet inhibition with ticagrelor to improve LV remodeling in patients with ST-segment elevation MI (HEALING-AMI) is an investigator-initiated, randomized, open-label, assessor-blinded, multi-center trial done at 10 sites in Korea. Patients will be enrolled if they have ST-segment elevation MI (STEMI) treated with primary percutaneous coronary intervention and a planned duration of dual antiplatelet treatment of at least 6 months. Screened patients will be randomly assigned (1:1) using an internet-based randomization with a computer-generated blocking with stratification across study sites to either ticagrelor or clopidogrel treatment. The co-primary primary endpoints are LV remodeling index with three-dimensional echocardiography and the level of N-terminal prohormone B-type natriuretic peptide (NT-proBNP) at 6 months representing post-MI remodeling processes. Changes of LV end-systolic/diastolic volume indices and LV ejection fraction between baseline and 6-month follow-up will be also evaluated. Analysis is per protocol.
CONCLUSIONS
HEALING-AMI is testing the effect of ticagrelor in reducing adverse LV remodeling following STEMI. Our trial would show the benefit of ticagrelor vs. clopidogrel related to the recovery of post-MI LV dysfunction beyond potent platelet inhibition.TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02224534
9.Prognostic value of total triiodothyronine and free thyroxine levels for the heart failure in patients with acute myocardial infarction.
Min Gyu KANG ; Jong Ryeal HAHM ; Kye Hwan KIM ; Hyun Woong PARK ; Jin Sin KOH ; Seok Jae HWANG ; Jin Yong HWANG ; Jong Hwa AHN ; Yongwhi PARK ; Young Hoon JEONG ; Jeong Rang PARK ; Choong Hwan KWAK
The Korean Journal of Internal Medicine 2018;33(3):512-521
BACKGROUND/AIMS: Although a low triiodothyronine (T3) state is closely associated with heart failure (HF), it is uncertain whether total T3 levels on admission is correlated with the clinical outcomes of acute myocardial infarction (AMI). The aim of this study is to investigate the prognostic value of total T3 levels for major adverse cardiovascular and cerebrovascular events (MACCEs) in patients with AMI undergone percutaneous coronary intervention (PCI). METHODS: A total of 765 PCI-treated AMI patients (65.4 ± 12.6 years old, 215 women) between January 2012 and July 2014 were included and 1-year MACCEs were analyzed. We assessed the correlation of total T3 and free thyroxine (fT4) with prevalence of 1-year MACCEs and the predictive values of total T3, fT4, and the ratio of total T3 to fT4 (T3/fT4), especially for HF requiring re-hospitalization. RESULTS: Thirty patients (3.9%) were re-hospitalized within 12 months to control HF symptoms. Total T3 levels were lower in the HF group than in the non-HF group (84.32 ± 21.04 ng/dL vs. 101.20 ± 20.30 ng/dL, p < 0.001). Receiver operating characteristic curve analysis showed the cut-offs of total T3 levels (≤ 85 ng/dL) and T3/fT4 (≤ 60) for HF (area under curve [AUC] = 0.734, p < 0.001; AUC = 0.774, p < 0.001, respectively). In multivariate analysis, lower T3/fT4 was an independent predictor for 1-year HF in PCI-treated AMI patients (odds ratio, 1.035; 95% confidential interval, 1.007 to 1.064; p = 0.015). CONCLUSIONS: Lower levels of total T3 were well correlated with 1-year HF in PCI-treated AMI patients. The T3/fT4 levels can be an additional marker to predict HF.
Area Under Curve
;
Heart Failure*
;
Heart*
;
Humans
;
Multivariate Analysis
;
Myocardial Infarction*
;
Percutaneous Coronary Intervention
;
Prevalence
;
Prognosis
;
ROC Curve
;
Thyroxine*
;
Triiodothyronine*
10.A Rare Case of Left Ventricular Noncompaction in LEOPARD Syndrome.
Kyehwan KIM ; Min Gyu KANG ; Hyun Woong PARK ; Jin Sin KOH ; Jeong Rang PARK ; Seok Jae HWANG ; Jin Yong HWANG
Journal of Cardiovascular Ultrasound 2018;26(1):43-44
No abstract available.
Atrial Fibrillation
;
LEOPARD Syndrome*
;
Panthera*

Result Analysis
Print
Save
E-mail