1.Dynamics of T Cell-Mediated Immune Signaling Network During Pathogenesis of Chronic Obstructive Pulmonary Disease
Chae Min LEE ; Andrew Sehoon KIM ; Minki KIM ; Jae Woong JEONG ; Sugyeong JO ; Nahee HWANG ; Sungsoon FANG
Yonsei Medical Journal 2025;66(6):354-365
Purpose:
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and increased inflammation, leading to respiratory symptoms. This study aimed to identify the traits for COPD progression from mild to severe stages. Additionally, we explored the correlation between coronavirus disease-2019 (COVID-19) and COPD to uncover overlapping respiratory patterns.
Materials and Methods:
Bulk RNA sequencing was conducted on data from 43 healthy individuals and 39 COPD patients across one dataset (GSE239897) to distinguish COPD characteristics. Single-cell RNA analysis was then performed on samples from seven mild patients, seven moderate patients, and three severe patients from three datasets (GSE167295, GSE173896, and GSE227691) to analyze disease progression. Finally, single-nuclei RNA analysis was applied to data from seven healthy individuals and 20 COVID-19 patients from one dataset (GSE171524) to compare the two conditions.
Results:
Bulk RNA sequencing revealed enhanced inflammatory pathways in COPD patients, indicating increased inflammation.Single-cell RNA sequencing showed a stronger inflammatory response from mild to moderate COPD with a decrease from moderate to severe stages. COVID-19 displayed similar biological patterns to moderate COPD, suggesting that stage-specific COPD analysis could enhance COVID-19 management.
Conclusion
The analysis found that immune responses increased from mild to moderate stages but declined in severe cases, marked by reduced pulmonary T cell activation. The overlap between moderate COPD and COVID-19 suggests shared therapeutic strategies, warranting further investigation.
2.State-of-the-art in high throughput organ-on-chip for biotechnology and pharmaceuticals
Clinical and Experimental Reproductive Medicine 2025;52(2):114-124
Modern drug discovery is driven by high demand in the pharmaceutical industry to test growing libraries of compounds against potential targets. High-throughput screening (HTS) is characterized by fully automated experimentation that leverages robotic liquid handling systems, analytical techniques, and advanced computing and statistics, including the recent integration of artificial intelligence. To align with this trend, it is crucial to develop and implement new HTS platforms that offer improved predictivity and physiological relevance. In recent years, microphysiological systems, commonly known as organ-on-chip (OoC) systems, have progressed from a theoretical concept to a powerful alternative to conventional in vitro and animal models. High-throughput OoC (HT-OoC) systems could represent the disruptive technology sought by pharmaceutical companies to address their enormous research and development (R&D) expenses. In this study, we provide a brief overview of commercial products utilizing modern HT-OoC systems in drug discovery and development. Additionally, we discuss recent trends in R&D aimed at industrialization.
3.Dynamics of T Cell-Mediated Immune Signaling Network During Pathogenesis of Chronic Obstructive Pulmonary Disease
Chae Min LEE ; Andrew Sehoon KIM ; Minki KIM ; Jae Woong JEONG ; Sugyeong JO ; Nahee HWANG ; Sungsoon FANG
Yonsei Medical Journal 2025;66(6):354-365
Purpose:
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and increased inflammation, leading to respiratory symptoms. This study aimed to identify the traits for COPD progression from mild to severe stages. Additionally, we explored the correlation between coronavirus disease-2019 (COVID-19) and COPD to uncover overlapping respiratory patterns.
Materials and Methods:
Bulk RNA sequencing was conducted on data from 43 healthy individuals and 39 COPD patients across one dataset (GSE239897) to distinguish COPD characteristics. Single-cell RNA analysis was then performed on samples from seven mild patients, seven moderate patients, and three severe patients from three datasets (GSE167295, GSE173896, and GSE227691) to analyze disease progression. Finally, single-nuclei RNA analysis was applied to data from seven healthy individuals and 20 COVID-19 patients from one dataset (GSE171524) to compare the two conditions.
Results:
Bulk RNA sequencing revealed enhanced inflammatory pathways in COPD patients, indicating increased inflammation.Single-cell RNA sequencing showed a stronger inflammatory response from mild to moderate COPD with a decrease from moderate to severe stages. COVID-19 displayed similar biological patterns to moderate COPD, suggesting that stage-specific COPD analysis could enhance COVID-19 management.
Conclusion
The analysis found that immune responses increased from mild to moderate stages but declined in severe cases, marked by reduced pulmonary T cell activation. The overlap between moderate COPD and COVID-19 suggests shared therapeutic strategies, warranting further investigation.
4.Dynamics of T Cell-Mediated Immune Signaling Network During Pathogenesis of Chronic Obstructive Pulmonary Disease
Chae Min LEE ; Andrew Sehoon KIM ; Minki KIM ; Jae Woong JEONG ; Sugyeong JO ; Nahee HWANG ; Sungsoon FANG
Yonsei Medical Journal 2025;66(6):354-365
Purpose:
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and increased inflammation, leading to respiratory symptoms. This study aimed to identify the traits for COPD progression from mild to severe stages. Additionally, we explored the correlation between coronavirus disease-2019 (COVID-19) and COPD to uncover overlapping respiratory patterns.
Materials and Methods:
Bulk RNA sequencing was conducted on data from 43 healthy individuals and 39 COPD patients across one dataset (GSE239897) to distinguish COPD characteristics. Single-cell RNA analysis was then performed on samples from seven mild patients, seven moderate patients, and three severe patients from three datasets (GSE167295, GSE173896, and GSE227691) to analyze disease progression. Finally, single-nuclei RNA analysis was applied to data from seven healthy individuals and 20 COVID-19 patients from one dataset (GSE171524) to compare the two conditions.
Results:
Bulk RNA sequencing revealed enhanced inflammatory pathways in COPD patients, indicating increased inflammation.Single-cell RNA sequencing showed a stronger inflammatory response from mild to moderate COPD with a decrease from moderate to severe stages. COVID-19 displayed similar biological patterns to moderate COPD, suggesting that stage-specific COPD analysis could enhance COVID-19 management.
Conclusion
The analysis found that immune responses increased from mild to moderate stages but declined in severe cases, marked by reduced pulmonary T cell activation. The overlap between moderate COPD and COVID-19 suggests shared therapeutic strategies, warranting further investigation.
5.State-of-the-art in high throughput organ-on-chip for biotechnology and pharmaceuticals
Clinical and Experimental Reproductive Medicine 2025;52(2):114-124
Modern drug discovery is driven by high demand in the pharmaceutical industry to test growing libraries of compounds against potential targets. High-throughput screening (HTS) is characterized by fully automated experimentation that leverages robotic liquid handling systems, analytical techniques, and advanced computing and statistics, including the recent integration of artificial intelligence. To align with this trend, it is crucial to develop and implement new HTS platforms that offer improved predictivity and physiological relevance. In recent years, microphysiological systems, commonly known as organ-on-chip (OoC) systems, have progressed from a theoretical concept to a powerful alternative to conventional in vitro and animal models. High-throughput OoC (HT-OoC) systems could represent the disruptive technology sought by pharmaceutical companies to address their enormous research and development (R&D) expenses. In this study, we provide a brief overview of commercial products utilizing modern HT-OoC systems in drug discovery and development. Additionally, we discuss recent trends in R&D aimed at industrialization.
6.Dynamics of T Cell-Mediated Immune Signaling Network During Pathogenesis of Chronic Obstructive Pulmonary Disease
Chae Min LEE ; Andrew Sehoon KIM ; Minki KIM ; Jae Woong JEONG ; Sugyeong JO ; Nahee HWANG ; Sungsoon FANG
Yonsei Medical Journal 2025;66(6):354-365
Purpose:
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and increased inflammation, leading to respiratory symptoms. This study aimed to identify the traits for COPD progression from mild to severe stages. Additionally, we explored the correlation between coronavirus disease-2019 (COVID-19) and COPD to uncover overlapping respiratory patterns.
Materials and Methods:
Bulk RNA sequencing was conducted on data from 43 healthy individuals and 39 COPD patients across one dataset (GSE239897) to distinguish COPD characteristics. Single-cell RNA analysis was then performed on samples from seven mild patients, seven moderate patients, and three severe patients from three datasets (GSE167295, GSE173896, and GSE227691) to analyze disease progression. Finally, single-nuclei RNA analysis was applied to data from seven healthy individuals and 20 COVID-19 patients from one dataset (GSE171524) to compare the two conditions.
Results:
Bulk RNA sequencing revealed enhanced inflammatory pathways in COPD patients, indicating increased inflammation.Single-cell RNA sequencing showed a stronger inflammatory response from mild to moderate COPD with a decrease from moderate to severe stages. COVID-19 displayed similar biological patterns to moderate COPD, suggesting that stage-specific COPD analysis could enhance COVID-19 management.
Conclusion
The analysis found that immune responses increased from mild to moderate stages but declined in severe cases, marked by reduced pulmonary T cell activation. The overlap between moderate COPD and COVID-19 suggests shared therapeutic strategies, warranting further investigation.
7.State-of-the-art in high throughput organ-on-chip for biotechnology and pharmaceuticals
Clinical and Experimental Reproductive Medicine 2025;52(2):114-124
Modern drug discovery is driven by high demand in the pharmaceutical industry to test growing libraries of compounds against potential targets. High-throughput screening (HTS) is characterized by fully automated experimentation that leverages robotic liquid handling systems, analytical techniques, and advanced computing and statistics, including the recent integration of artificial intelligence. To align with this trend, it is crucial to develop and implement new HTS platforms that offer improved predictivity and physiological relevance. In recent years, microphysiological systems, commonly known as organ-on-chip (OoC) systems, have progressed from a theoretical concept to a powerful alternative to conventional in vitro and animal models. High-throughput OoC (HT-OoC) systems could represent the disruptive technology sought by pharmaceutical companies to address their enormous research and development (R&D) expenses. In this study, we provide a brief overview of commercial products utilizing modern HT-OoC systems in drug discovery and development. Additionally, we discuss recent trends in R&D aimed at industrialization.
8.Dynamics of T Cell-Mediated Immune Signaling Network During Pathogenesis of Chronic Obstructive Pulmonary Disease
Chae Min LEE ; Andrew Sehoon KIM ; Minki KIM ; Jae Woong JEONG ; Sugyeong JO ; Nahee HWANG ; Sungsoon FANG
Yonsei Medical Journal 2025;66(6):354-365
Purpose:
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and increased inflammation, leading to respiratory symptoms. This study aimed to identify the traits for COPD progression from mild to severe stages. Additionally, we explored the correlation between coronavirus disease-2019 (COVID-19) and COPD to uncover overlapping respiratory patterns.
Materials and Methods:
Bulk RNA sequencing was conducted on data from 43 healthy individuals and 39 COPD patients across one dataset (GSE239897) to distinguish COPD characteristics. Single-cell RNA analysis was then performed on samples from seven mild patients, seven moderate patients, and three severe patients from three datasets (GSE167295, GSE173896, and GSE227691) to analyze disease progression. Finally, single-nuclei RNA analysis was applied to data from seven healthy individuals and 20 COVID-19 patients from one dataset (GSE171524) to compare the two conditions.
Results:
Bulk RNA sequencing revealed enhanced inflammatory pathways in COPD patients, indicating increased inflammation.Single-cell RNA sequencing showed a stronger inflammatory response from mild to moderate COPD with a decrease from moderate to severe stages. COVID-19 displayed similar biological patterns to moderate COPD, suggesting that stage-specific COPD analysis could enhance COVID-19 management.
Conclusion
The analysis found that immune responses increased from mild to moderate stages but declined in severe cases, marked by reduced pulmonary T cell activation. The overlap between moderate COPD and COVID-19 suggests shared therapeutic strategies, warranting further investigation.
9.A Case of Elastofibroma on the Neck
Sehoon LEE ; Suyeun KIM ; Minah CHO ; Yu Jin HAN ; Yu Ri WOO ; Sang Hyun CHO ; Jeong Deuk LEE ; Hei Sung KIM
Korean Journal of Dermatology 2024;62(7):432-434
10.Predicting Postoperative Complications and Long-Term Survival After Lung Cancer Surgery Using Eurolung Risk Score
Jae Kwang YUN ; Jae Hwa JEONG ; Geun Dong LEE ; Hyeong Ryul KIM ; Yong-Hee KIM ; Dong Kwan KIM ; Seung-Il PARK ; Sehoon CHOI
Journal of Korean Medical Science 2022;37(5):e36-
Background:
This study aimed to assess the clinical relevance of the parsimonious Eurolung risk scoring system for predicting postoperative morbidity, mortality, and long-term survival in Korean patients with surgically resected non-small cell lung cancer.
Methods:
This retrospective analysis used the data of patients who underwent anatomical resection for non-small cell lung cancer between 2004 and 2018 at a single institution. The parsimonious aggregate Eurolung score was calculated for each patient. The Cox regression model was used to determine the ability of the Eurolung scoring system for predicting longterm outcomes.
Results:
Of the 7,278 patients in the study, cardiopulmonary complications and mortality occurred in 687 (9.4%) and 53 (0.7%) patients, respectively. The rate of cardiopulmonary complications and mortality gradually increased with the increase in the Eurolung risk scores (all P < 0.001). When risk scores were grouped into four categories, the Eurolung scoring system showed a stepwise deterioration of overall survival with the increase in risk scores, and this association was statistically significant (P < 0.001). Multivariate Cox analysis showed that the Eurolung scoring system, classified into four categories, was a significant prognostic factor of overall survival even after adjusting for covariates such as tumor histology and pathological stage (P < 0.001).
Conclusion
Stratification based on the parsimonious Eurolung scoring system showed good discriminatory ability for predicting postoperative morbidity, mortality, and long-term survival in South Korean patients with surgically resected non-small cell lung cancer. This might help clinicians to provide a detailed prognosis and decide the appropriate treatment option for high-risk patients with non-small cell lung cancer.

Result Analysis
Print
Save
E-mail