1.Human Pluripotent Stem Cell-Derived Alveolar Organoids: Cellular Heterogeneity and Maturity
Ji-hye JUNG ; Se-Ran YANG ; Woo Jin KIM ; Chin Kook RHEE ; Seok-Ho HONG
Tuberculosis and Respiratory Diseases 2024;87(1):52-64
Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.
2.Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice
Youngheon PARK ; Jimin JANG ; Jooyeon LEE ; Hyosin BAEK ; Jaehyun PARK ; Sang-Ryul CHA ; Se Bi LEE ; Sunghun NA ; Jae-Woo KWON ; Seok-Ho HONG ; Se-Ran YANG
International Journal of Stem Cells 2023;16(2):191-201
Background and Objectives:
O-cyclic phytosphingosine-1-phosphate (cP1P) is a synthetic chemical and has a structure like sphingosine-1-phosphate (S1P). S1P is known to promote cell migration, invasion, proliferation, and anti-apoptosis through hippocampal signals. However, S1P mediated cellular-, molecular mechanism is still remained in the lung.Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are characterized by excessive immune response, increased vascular permeability, alveolar-peritoneal barrier collapse, and edema. In this study, we determined whether cP1P primed human dermal derived mesenchymal stem cells (hdMSCs) ameliorate lung injury and its therapeutic pathway in ALI mice.
Methods:
and Results: cP1P treatment significantly stimulated MSC migration and invasion ability. In cytokine array, secretion of vascular-related factors was increased in cP1P primed hdMSCs (hdMSCcP1P ), and cP1P treatment induced inhibition of Lats while increased phosphorylation of Yap. We next determined whether hdMSCcP1P reduce inflammatory response in LPS exposed mice. hdMSCcP1P further decreased infiltration of macrophage and neutrophil, and release of TNF-α, IL-1β, and IL-6 were reduced rather than naïve hdMSC treatment. In addition, phosphorylation of STAT1 and expression of iNOS were significantly decreased in the lungs of MSCcP1P treated mice.
Conclusions
Taken together, these data suggest that cP1P treatment enhances hdMSC migration in regulation of Hippo signaling and MSCcP1P provide a therapeutic potential for ALI/ARDS treatment.
3.Corrigendum to “Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice”
Youngheon PARK ; Jimin JANG ; Jooyeon LEE ; Hyosin BAEK ; Jaehyun PARK ; Sang-Ryul CHA ; Se Bi LEE ; Sunghun NA ; Jae-Woo KWON ; Young Jun PARK ; Myeong Jun CHOI ; Kye-Seong KIM ; Seok-Ho HONG ; Se-Ran YANG
International Journal of Stem Cells 2023;16(4):448-449
4.Recombinant Human Bone Morphogenetic Protein-2 Priming of Mesenchymal Stem Cells Ameliorate Acute Lung Injury by Inducing Regulatory T Cells
Jooyeon LEE ; Jimin JANG ; Sang-Ryul CHA ; Se Bi LEE ; Seok-Ho HONG ; Han-Sol BAE ; Young Jin LEE ; Se-Ran YANG
Immune Network 2023;23(6):e48-
Mesenchymal stromal/stem cells (MSCs) possess immunoregulatory properties and their regulatory functions represent a potential therapy for acute lung injury (ALI). However, uncertainties remain with respect to defining MSCs-derived immunomodulatory pathways.Therefore, this study aimed to investigate the mechanism underlying the enhanced effect of human recombinant bone morphogenic protein-2 (rhBMP-2) primed ES-MSCs (MSC BMP2 ) in promoting Tregs in ALI mice. MSC were preconditioned with 100 ng/ml rhBMP-2 for 24 h, and then administrated to mice by intravenous injection after intratracheal injection of 1 mg/kg LPS. Treating MSCs with rhBMP-2 significantly increased cellular proliferation and migration, and cytokines array reveled that cytokines release by MSC BMP2 were associated with migration and growth. MSC BMP2 ameliorated LPS induced lung injury and reduced myeloperoxidase activity and permeability in mice exposed to LPS. Levels of inducible nitric oxide synthase were decreased while levels of total glutathione and superoxide dismutase activity were further increased via inhibition of phosphorylated STAT1 in ALI mice treated with MSC BMP2 . MSC BMP2 treatment increased the protein level of IDO1, indicating an increase in Treg cells, and Foxp3 + CD25 + Treg of CD4 + cells were further increased in ALI mice treated with MSC BMP2 . In co-culture assays with MSCs and RAW264.7 cells, the protein level of IDO1 was further induced in MSC BMP2 . Additionally, cytokine release of IL-10 was enhanced while both IL-6 and TNF-α were further inhibited. In conclusion, these findings suggest that MSC BMP2 has therapeutic potential to reduce massive inflammation of respiratory diseases by promoting Treg cells.
5.Organoid Model in Idiopathic Pulmonary Fibrosis
Jooyeon LEE ; Jung-Hyun KIM ; Seok-Ho HONG ; Se-Ran YANG
International Journal of Stem Cells 2021;14(1):1-8
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive- fibrosing disease characterized by extensive deposition of extracellular matrix (ECM), scarring of the lung parenchyma. Despite increased awareness of IPF, etiology and physiological mechanism of IPF are unclear. Therefore, preclinical model will require relevant and recapitulative features of IPF. Recently, pluripotent stem cells (PSC)-based organoid studies are emerging as an alternative approach able to recapitulate tissue architecture with remarkable fidelity. Moreover, these biomimetic tissue models can be served to investigate the mechanisms of diverse disease progression. In this review, we will overview the current organoids technology for human disease modeling including lung organoids for IPF.
6.Reduced receptor for advanced glycation end products is associated with α-SMA expression in patients with idiopathic pulmonary fibrosis and mice
Hyosin BAEK ; Soojin JANG ; Jaehyun PARK ; Jimin JANG ; Jooyeon LEE ; Seok-Ho HONG ; Woo Jin KIM ; Sung-Min PARK ; Se-Ran YANG
Laboratory Animal Research 2021;37(4):277-284
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Despite alveolar epithelial cells is crucial role in lung, its contribution and the associated biomarker remain unknown in the pathogenesis of IPF. Recently, environmental factors including stone dust, silica and cigarette smoking were found as risk factors involved in IPF. Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin super family of cell surface receptors. It has been shown that interaction between RAGE and its ligands on immune cells mediates cellular migration and regulation of pro-inflammation. RAGE is highly expressed in the lung, in particular, alveolar epithelial cells. Therefore, we determined whether RAGE expression is associated with fibrosis-associated genes in patients with IPF and mice.
Results:
When bleomycin (BLM) was intratracheally administered to C57BL/6 mice for 1, 2 weeks, macrophage and neutrophils were significantly increased. The fibrotic nodule formed and accumulation of collagen was determined after BLM injection in H&E- and Masson’s trichrome staining. Levels of elastin, Col1a1 and fibronectin were increased in quantitative real-time PCR and protein levels of α-SMA was increased in western blot analysis. In the lung tissues of 1 mg/kg BLM-induced mice, RAGE expression was gradually decreased in 1- and 2 weeks in immunohistochemistry and western blot analysis, and 3 mg/kg of BLM-induced mice exhibited decreased RAGE levels while α-SMA expression was increased. We next determined RAGE expression in the lungs of IPF patients using immunohistochemistry.As a result, RAGE expression was decreased, while α-SMA expression was increased compared with non-IPF subjects.
Conclusions
Our findings suggest that reduced RAGE was associated with increased fibrotic genes in BLM-induced mice and patients with IPF. Therefore, RAGE could be applied with a biomarker for prognosis and diagnosis in the pathogenesis of IPF.
7.Perivascular Stem Cells Suppress Inflammasome Activation during Inflammatory Responses in Macrophages
Jeeyoung KIM ; Woo Jin KIM ; Kwon Soo HA ; Eun Taek HAN ; Won Sun PARK ; Se Ran YANG ; Seok Ho HONG
International Journal of Stem Cells 2019;12(3):419-429
BACKGROUND AND OBJECTIVES: Perivascular stem cells (PVCs) have been identified as precursors of mesenchymal stem cells (MSCs) that offer promising prospects for application in the development of cellular therapies. Although PVCs have been demonstrated to have greater therapeutic potential compared to bone marrow and adipose tissue-derived MSCs in various diseases, the regulatory role of PVCs on inflammasome activation during macrophage-mediated inflammatory responses has not been investigated.METHODS AND RESULTS: In this study, we found that the PVC secretome effectively alleviates secretion of both caspase-1 and interleukin-1β in lipopolysaccharide-primed and activated human and murine macrophages by blocking inflammasome activation and attenuating the production of mitochondrial reactive oxygen species (ROS). We further showed that the PVC secretome significantly reduces inflammatory responses and endoplasmic reticulum stress in peritoneal macrophages in a mouse model of monosodium urate-induced peritonitis. A cytokine antibody array analysis revealed that the PVC secretome contains high levels of serpin E1 and angiogenin, which may be responsible for the inhibitory effects on mitochondrial ROS generation as well as on inflammasome activation.CONCLUSIONS: Our results suggest that PVCs may be therapeutically useful for the treatment of macrophage- and inflammation-mediated diseases by paracrine action via the secretion of various biological factors.
Animals
;
Biological Factors
;
Bone Marrow
;
Endoplasmic Reticulum Stress
;
Humans
;
Inflammasomes
;
Inflammation
;
Macrophages
;
Macrophages, Peritoneal
;
Mesenchymal Stromal Cells
;
Mice
;
Peritonitis
;
Plasminogen Activator Inhibitor 1
;
Reactive Oxygen Species
;
Stem Cells
8.Mesenchymal Stem Cell Transplantation Promotes Functional Recovery through MMP2/STAT3 Related Astrogliosis after Spinal Cord Injury
Choonghyo KIM ; Hee Jung KIM ; Hyun LEE ; Hanbyeol LEE ; Seung Jin LEE ; Seung Tae LEE ; Se Ran YANG ; Chun Kee CHUNG
International Journal of Stem Cells 2019;12(2):331-339
BACKGROUND AND OBJECTIVES: Treatment with mesenchymal stem cells (MSC) in spinal cord injury (SCI) has been highlighted as therapeutic candidate for SCI. Although astrogliosis is a major phenomenon after SCI, the role of astrogliosis is still controversial. In this study, we determined whether acute transplantation of MSC improves the outcome of SCI through modulating astrogliosis. METHODS: Bone marrow derived rat MSCs were induced neural differentiation and transplanted after acute SCI rats. Matrix metalloproteinase (MMP) and neuro-inflammatory pathway were analyzed for acute astrogliosis at 1, 3 and 7 d after SCI in RT-PCR- and western blot analysis. Functional outcome was assessed serially at postoperative 1 d and weekly for 4 weeks. Histopathologic analysis was undertaken at 7 and 28 d following injury in immunohistochemistry. RESULTS: Transplantation of MSCs decreased IL-1α, CXCL-2, CXCL-10, TNF-α and TGF-β in a rat model of contusive SCI. Protein level of NF-κB p65 was slightly decreased while level of STAT-3 was increased. In immunohistochemistry, MSC transplantation increased acute astrogliosis whereas attenuated scar formation with increased sparing white matter of spinal cord lesions. In RT-PCR analysis, mRNA levels of MMP2 was significantly increased in MSC transplanted rats. In BBB locomotor scale, the rats of MSC treated group exhibited improvement of functional recovery. CONCLUSIONS: Transplantation of MSC reduces the inflammatory reaction and modulates astrogliosis via MMP2/STAT3 pathway leading to improve functional recovery after SCI in rats.
Animals
;
Blotting, Western
;
Bone Marrow
;
Cicatrix
;
Immunohistochemistry
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
Models, Animal
;
Rats
;
RNA, Messenger
;
Spinal Cord Injuries
;
Spinal Cord
;
White Matter
9.Bleomycin Inhibits Proliferation via Schlafen-Mediated Cell Cycle Arrest in Mouse Alveolar Epithelial Cells
Soojin JANG ; Se Min RYU ; Jooyeon LEE ; Hanbyeol LEE ; Seok Ho HONG ; Kwon Soo HA ; Won Sun PARK ; Eun Taek HAN ; Se Ran YANG
Tuberculosis and Respiratory Diseases 2019;82(2):133-142
BACKGROUND: Idiopathic pulmonary fibrosis involves irreversible alveolar destruction. Although alveolar epithelial type II cells are key functional participants within the lung parenchyma, how epithelial cells are affected upon bleomycin (BLM) exposure remains unknown. In this study, we determined whether BLM could induce cell cycle arrest via regulation of Schlafen (SLFN) family genes, a group of cell cycle regulators known to mediate growth-inhibitory responses and apoptosis in alveolar epithelial type II cells. METHODS: Mouse AE II cell line MLE-12 were exposed to 1–10 µg/mL BLM and 0.01–100 µM baicalein (Bai), a G1/G2 cell cycle inhibitor, for 24 hours. Cell viability and levels of pro-inflammatory cytokines were analyzed by MTT and enzyme-linked immunosorbent assay, respectively. Apoptosis-related gene expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Cellular morphology was determined after DAPI and Hoechst 33258 staining. To verify cell cycle arrest, propidium iodide (PI) staining was performed for MLE-12 after exposure to BLM. RESULTS: BLM decreased the proliferation of MLE-12 cells. However, it significantly increased expression levels of interleukin 6, tumor necrosis factor α, and transforming growth factor β1. Based on Hoechst 33258 staining, BLM induced condensation of nuclear and fragmentation. Based on DAPI and PI staining, BLM significantly increased the size of nuclei and induced G2/M phase cell cycle arrest. Results of qRT-PCR analysis revealed that BLM increased mRNA levels of BAX but decreased those of Bcl2. In addition, BLM/Bai increased mRNA levels of p53, p21, SLFN1, 2, 4 of Schlafen family. CONCLUSION: BLM exposure affects pulmonary epithelial type II cells, resulting in decreased proliferation possibly through apoptotic and cell cycle arrest associated signaling.
Animals
;
Apoptosis
;
Bisbenzimidazole
;
Bleomycin
;
Cell Cycle Checkpoints
;
Cell Cycle
;
Cell Line
;
Cell Survival
;
Cytokines
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells
;
Gene Expression
;
Genes, vif
;
Humans
;
Idiopathic Pulmonary Fibrosis
;
Interleukin-6
;
Lung
;
Mice
;
Propidium
;
RNA, Messenger
;
Transforming Growth Factors
;
Tumor Necrosis Factor-alpha
10.Bleomycin Inhibits Proliferation via Schlafen-Mediated Cell Cycle Arrest in Mouse Alveolar Epithelial Cells
Soojin JANG ; Se Min RYU ; Jooyeon LEE ; Hanbyeol LEE ; Seok Ho HONG ; Kwon Soo HA ; Won Sun PARK ; Eun Taek HAN ; Se Ran YANG
Tuberculosis and Respiratory Diseases 2019;82(2):133-142
BACKGROUND:
Idiopathic pulmonary fibrosis involves irreversible alveolar destruction. Although alveolar epithelial type II cells are key functional participants within the lung parenchyma, how epithelial cells are affected upon bleomycin (BLM) exposure remains unknown. In this study, we determined whether BLM could induce cell cycle arrest via regulation of Schlafen (SLFN) family genes, a group of cell cycle regulators known to mediate growth-inhibitory responses and apoptosis in alveolar epithelial type II cells.
METHODS:
Mouse AE II cell line MLE-12 were exposed to 1–10 µg/mL BLM and 0.01–100 µM baicalein (Bai), a G1/G2 cell cycle inhibitor, for 24 hours. Cell viability and levels of pro-inflammatory cytokines were analyzed by MTT and enzyme-linked immunosorbent assay, respectively. Apoptosis-related gene expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Cellular morphology was determined after DAPI and Hoechst 33258 staining. To verify cell cycle arrest, propidium iodide (PI) staining was performed for MLE-12 after exposure to BLM.
RESULTS:
BLM decreased the proliferation of MLE-12 cells. However, it significantly increased expression levels of interleukin 6, tumor necrosis factor α, and transforming growth factor β1. Based on Hoechst 33258 staining, BLM induced condensation of nuclear and fragmentation. Based on DAPI and PI staining, BLM significantly increased the size of nuclei and induced G2/M phase cell cycle arrest. Results of qRT-PCR analysis revealed that BLM increased mRNA levels of BAX but decreased those of Bcl2. In addition, BLM/Bai increased mRNA levels of p53, p21, SLFN1, 2, 4 of Schlafen family.
CONCLUSION
BLM exposure affects pulmonary epithelial type II cells, resulting in decreased proliferation possibly through apoptotic and cell cycle arrest associated signaling.

Result Analysis
Print
Save
E-mail