1.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
2.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
3.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
4.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
5.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
6.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
7.Association of the Korean-specific food-based index of dietary inflammatory potential with the risk of mild cognitive impairment in Korean older adults
Se Yeon HWANG ; Chong-Su KIM ; Mi Kyung KIM ; Yoonkyoung YANG ; Yoon Jung YANG
Epidemiology and Health 2024;46(1):e2024067-
OBJECTIVES:
This study aimed to examine the association between the food-based index of dietary inflammatory potential (FBDI) and the risk of mild cognitive impairment (MCI) in Korean older adults.
METHODS:
The subjects were 798 Korean adults aged 60 years and older. The FBDI was calculated based on the intake of 7 anti-inflammatory and 3 inflammatory food groups. Cognitive function was assessed using the Korean version of the Mini-Mental State Examination. A general linear model and multiple logistic regression were applied to assess the association between FBDI and the risk of MCI.
RESULTS:
As the FBDI increased, the intake of white rice, cookies/candies, and sweetened drinks tended to increase, but the intake of niacin, β-carotene, calcium, and potassium tended to decrease (p for trend<0.05). The highest FBDI group had a higher MCI risk (odds ratio [OR], 1.60; 95% confidence interval [CI], 1.01 to 2.52) than the lowest FBDI group, adjusted for gender, age, and education level; and this trend was significant in a fully adjusted model (p for trend=0.039). No significant associations were found in men after adjusting for confounding factors. Among women, MCI risk increased as the FBDI increased (p for trend=0.007); and the highest FBDI group had a higher MCI risk (OR, 2.22; 95% CI, 1.04 to 4.74) than the lowest FBDI group in a fully adjusted model.
CONCLUSIONS
These results suggest that the appropriate intake of anti-inflammatory foods and nutrients may be associated with a reduced risk of MCI among older adults.
8.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
9.Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography
Se Woo KIM ; Jung-Eun CHEON ; Young Hun CHOI ; Jae-Yeon HWANG ; Su-Mi SHIN ; Yeon Jin CHO ; Seunghyun LEE ; Seul Bi LEE
Ultrasonography 2024;43(1):57-67
Purpose:
This study explored the feasibility of utilizing a deep learning artificial intelligence (AI) model to detect ileocolic intussusception on grayscale ultrasound images.
Methods:
This retrospective observational study incorporated ultrasound images of children who underwent emergency ultrasonography for suspected ileocolic intussusception. After excluding video clips, Doppler images, and annotated images, 40,765 images from two tertiary hospitals were included (positive-to-negative ratio: hospital A, 2,775:35,373; hospital B, 140:2,477). Images from hospital A were split into a training set, a tuning set, and an internal test set (ITS) at a ratio of 7:1.5:1.5. Images from hospital B comprised an external test set (ETS). For each image indicating intussusception, two radiologists provided a bounding box as the ground-truth label. If intussusception was suspected in the input image, the model generated a bounding box with a confidence score (0-1) at the estimated lesion location. Average precision (AP) was used to evaluate overall model performance. The performance of practical thresholds for the modelgenerated confidence score, as determined from the ITS, was verified using the ETS.
Results:
The AP values for the ITS and ETS were 0.952 and 0.936, respectively. Two confidence thresholds, CTopt and CTprecision, were set at 0.557 and 0.790, respectively. For the ETS, the perimage precision and recall were 95.7% and 80.0% with CTopt, and 98.4% and 44.3% with CTprecision. For per-patient diagnosis, the sensitivity and specificity were 100.0% and 97.1% with CTopt, and 100.0% and 99.0% with CTprecision. The average number of false positives per patient was 0.04 with CTopt and 0.01 for CTprecision.
Conclusion
The feasibility of using an AI model to diagnose ileocolic intussusception on ultrasonography was demonstrated. However, further study involving bias-free data is warranted for robust clinical validation.
10.Association of the Korean-specific food-based index of dietary inflammatory potential with the risk of mild cognitive impairment in Korean older adults
Se Yeon HWANG ; Chong-Su KIM ; Mi Kyung KIM ; Yoonkyoung YANG ; Yoon Jung YANG
Epidemiology and Health 2024;46(1):e2024067-
OBJECTIVES:
This study aimed to examine the association between the food-based index of dietary inflammatory potential (FBDI) and the risk of mild cognitive impairment (MCI) in Korean older adults.
METHODS:
The subjects were 798 Korean adults aged 60 years and older. The FBDI was calculated based on the intake of 7 anti-inflammatory and 3 inflammatory food groups. Cognitive function was assessed using the Korean version of the Mini-Mental State Examination. A general linear model and multiple logistic regression were applied to assess the association between FBDI and the risk of MCI.
RESULTS:
As the FBDI increased, the intake of white rice, cookies/candies, and sweetened drinks tended to increase, but the intake of niacin, β-carotene, calcium, and potassium tended to decrease (p for trend<0.05). The highest FBDI group had a higher MCI risk (odds ratio [OR], 1.60; 95% confidence interval [CI], 1.01 to 2.52) than the lowest FBDI group, adjusted for gender, age, and education level; and this trend was significant in a fully adjusted model (p for trend=0.039). No significant associations were found in men after adjusting for confounding factors. Among women, MCI risk increased as the FBDI increased (p for trend=0.007); and the highest FBDI group had a higher MCI risk (OR, 2.22; 95% CI, 1.04 to 4.74) than the lowest FBDI group in a fully adjusted model.
CONCLUSIONS
These results suggest that the appropriate intake of anti-inflammatory foods and nutrients may be associated with a reduced risk of MCI among older adults.

Result Analysis
Print
Save
E-mail