1.SENP2-mediated SERCA2a deSUMOylation increases calcium overload in cardiomyocytes to aggravate myocardial ischemia/reperfusion injury.
Yuanyuan LUO ; Shuaishuai ZHOU ; Tao XU ; Wanling WU ; Pingping SHANG ; Shuai WANG ; Defeng PAN ; Dongye LI
Chinese Medical Journal 2023;136(20):2496-2507
		                        		
		                        			BACKGROUND:
		                        			Sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) is a key protein that maintains myocardial Ca 2+ homeostasis. The present study aimed to investigate the mechanism underlying the SERCA2a-SUMOylation (small ubiquitin-like modifier) process after ischemia/reperfusion injury (I/RI) in vitro and in vivo .
		                        		
		                        			METHODS:
		                        			Calcium transient and systolic/diastolic function of cardiomyocytes isolated from Serca2a knockout (KO) and wild-type mice with I/RI were compared. SUMO-relevant protein expression and localization were detected by quantitative real-time PCR (RT-qPCR), Western blotting, and immunofluorescence in vitro and in vivo . Serca2a-SUMOylation, infarct size, and cardiac function of Senp1 or Senp2 overexpressed/suppressed adenovirus infected cardiomyocytes, were detected by immunoprecipitation, triphenyltetrazolium chloride (TTC)-Evans blue staining, and echocardiography respectively.
		                        		
		                        			RESULTS:
		                        			The results showed that the changes of Fura-2 fluorescence intensity and contraction amplitude of cardiomyocytes decreased in the I/RI groups and were further reduced in the Serca2a KO + I/RI groups. Senp1 and Senp2 messenger ribose nucleic acid (mRNA) and protein expression levels in vivo and in cardiomyocytes were highest at 6 h and declined at 12 h after I/RI. However, the highest levels in HL-1 cells were recorded at 12 h. Senp2 expression increased in the cytoplasm, unlike that of Senp1. Inhibition of Senp2 protein reversed the I/RI-induced Serca2a-SUMOylation decline, reduced the infarction area, and improved cardiac function, while inhibition of Senp1 protein could not restore the above indicators.
		                        		
		                        			CONCLUSION
		                        			I/RI activated Senp1 and Senp2 protein expression, which promoted Serca2a-deSUMOylation, while inhibition of Senp2 expression reversed Serca2a-SUMOylation and improved cardiac function.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Calcium/metabolism*
		                        			;
		                        		
		                        			Cysteine Endopeptidases/metabolism*
		                        			;
		                        		
		                        			Myocardial Reperfusion Injury/metabolism*
		                        			;
		                        		
		                        			Myocardium/metabolism*
		                        			;
		                        		
		                        			Myocytes, Cardiac/metabolism*
		                        			;
		                        		
		                        			Proteins/metabolism*
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics*
		                        			
		                        		
		                        	
2.Oral administration of TRPV4 inhibitor improves atrial calcium handling abnormalities in sterile pericarditis rats.
Jie LIAO ; Shuai-Tao YANG ; Kai LU ; Yang LU ; Yu-Wei WU ; Yi-Mei DU
Acta Physiologica Sinica 2022;74(2):188-200
		                        		
		                        			
		                        			Atrial Ca2+ handling abnormalities, mainly involving the dysfunction of ryanodine receptor (RyR) and sarcoplasmic reticulum Ca2+-ATPase (SERCA), play a role in the pathogenesis of atrial fibrillation (AF). Previously, we found that the expression and function of transient receptor potential vanilloid subtype 4 (TRPV4) are upregulated in a sterile pericarditis (SP) rat model of AF, and oral administration of TRPV4 inhibitor GSK2193874 alleviates AF in this animal model. The aim of this study was to investigate whether oral administration of GSK2193874 could alleviate atrial Ca2+ handling abnormalities in SP rats. A SP rat model of AF was established by daubing sterile talcum powder on both atria of Sprague-Dawley (SD) rats after a pericardiotomy, to simulate the pathogenesis of postoperative atrial fibrillation (POAF). On the 3rd postoperative day, Ca2+ signals of atria were collected in isolated perfused hearts by optical mapping. Ca2+ transient duration (CaD), alternan, and the recovery properties of Ca2+ transient (CaT) were quantified and analyzed. GSK2193874 treatment reversed the abnormal prolongation of time to peak (determined mainly by RyR activity) and CaD (determined mainly by SERCA activity), as well as the regional heterogeneity of CaD in SP rats. Furthermore, GSK2193874 treatment relieved alternan in SP rats, and reduced its incidence of discordant alternan (DIS-ALT). More importantly, GSK2193874 treatment prevented the reduction of the S2/S1 CaT ratio (determined mainly by RyR refractoriness) in SP rats, and decreased its regional heterogeneity. Taken together, oral administration of TRPV4 inhibitor alleviates Ca2+ handling abnormalities in SP rats primarily by blocking the TRPV4-Ca2+-RyR pathway, and thus exerts therapeutic effect on POAF.
		                        		
		                        		
		                        		
		                        			Administration, Oral
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Atrial Fibrillation/etiology*
		                        			;
		                        		
		                        			Calcium/metabolism*
		                        			;
		                        		
		                        			Myocytes, Cardiac/metabolism*
		                        			;
		                        		
		                        			Pericarditis/pathology*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Ryanodine Receptor Calcium Release Channel/pharmacology*
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum/pathology*
		                        			;
		                        		
		                        			TRPV Cation Channels
		                        			
		                        		
		                        	
3.Positive inotropic effect of phosphodiesterase type 9 inhibitor PF-04449613 in rats and its underlying mechanism.
Xiao-Jia ZHU ; Yu-Wei WANG ; Wen-Hui ZHANG ; Li GAO ; Yu-Jie XIAO ; Qian-Wen GAO ; Rong-Rong WANG ; Long CHEN
Acta Physiologica Sinica 2021;73(2):275-285
		                        		
		                        			
		                        			This study aimed to explore the positive inotropic effect of phosphodiesterase type 9 (PDE9) inhibitor PF-04449613 in ratsand its cellular and molecular mechanisms. The heart pressure-volume loop (P-V loop) analysis was used to detect the effects of PF-04449613 on rat left ventricular pressure-volume relationship, aortic pressures and peripheral vessel resistance in healthy rats. The Langendorff perfusion of isolated rat heart was used to explore the effects of PF-04449613 on heart contractility. The cardiomyocyte sarcoplasmic reticulum (SR) Ca
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium/metabolism*
		                        			;
		                        		
		                        			Myocardial Contraction
		                        			;
		                        		
		                        			Myocytes, Cardiac/metabolism*
		                        			;
		                        		
		                        			Phosphodiesterase Inhibitors
		                        			;
		                        		
		                        			Phosphoric Diester Hydrolases
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Ryanodine Receptor Calcium Release Channel
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum
		                        			
		                        		
		                        	
4.Skeletal Muscle Thermogenesis and Its Role in Whole Body Energy Metabolism.
Muthu PERIASAMY ; Jose Luis HERRERA ; Felipe C G REIS
Diabetes & Metabolism Journal 2017;41(5):327-336
		                        		
		                        			
		                        			Obesity and diabetes has become a major epidemic across the globe. Controlling obesity has been a challenge since this would require either increased physical activity or reduced caloric intake; both are difficult to enforce. There has been renewed interest in exploiting pathways such as uncoupling protein 1 (UCP1)-mediated uncoupling in brown adipose tissue (BAT) and white adipose tissue to increase energy expenditure to control weight gain. However, relying on UCP1-based thermogenesis alone may not be sufficient to control obesity in humans. On the other hand, skeletal muscle is the largest organ and a major contributor to basal metabolic rate and increasing energy expenditure in muscle through nonshivering thermogenic mechanisms, which can substantially affect whole body metabolism and weight gain. In this review we will describe the role of Sarcolipin-mediated uncoupling of Sarcoplasmic Reticulum Calcium ATPase (SERCA) as a potential mechanism for increased energy expenditure both during cold and diet-induced thermogenesis.
		                        		
		                        		
		                        		
		                        			Adipose Tissue, Brown
		                        			;
		                        		
		                        			Adipose Tissue, White
		                        			;
		                        		
		                        			Basal Metabolism
		                        			;
		                        		
		                        			Diabetes Mellitus
		                        			;
		                        		
		                        			Energy Intake
		                        			;
		                        		
		                        			Energy Metabolism*
		                        			;
		                        		
		                        			Hand
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Metabolism
		                        			;
		                        		
		                        			Motor Activity
		                        			;
		                        		
		                        			Muscle, Skeletal*
		                        			;
		                        		
		                        			Obesity
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum Calcium-Transporting ATPases
		                        			;
		                        		
		                        			Thermogenesis*
		                        			;
		                        		
		                        			Weight Gain
		                        			
		                        		
		                        	
5.Shen-Fu Injection () alleviates post-resuscitation myocardial dysfunction by up-regulating expression of sarcoplasmic reticulum Ca(2+)-ATPase.
Zhi-Jun GUO ; Cai-Jun WU ; Chun-Sheng LI
Chinese journal of integrative medicine 2016;22(7):503-509
OBJECTIVETo compare the effect of Shen-Fu Injection (SFI) and epinephrine on the expression of sarcoplasmic reticulum Ca(2+) ATPase 2a (SERCA2a) in a pig model with post-resuscitation myocardial dysfunction.
METHODSVentricular fibrillation (VF) was electrically induced in Wu-zhi-shan miniature pigs. After 8 min of untreated VF and 2 min of cardiopulmonary resuscitation (CPR), all animals were randomly administered a bolus injection of saline placebo (SA group, n=10), SFI (0.8 mg/kg, SFI group, n=10) or epinephrine (20 μg/kg, EPI group, n=10). After 4 min of CPR, a 100-J shock was delivered. If the defibrillation attempt failed to attain restoration of spontaneous circulation (ROSC), manual chest compressions were rapidly resumed for a further 2 min followed by a second defibrillation attempt. Hemodynamic variables were recorded, and plasma concentrations of catecholamines were measured. Adenylate cyclase (AC), cyclic adenosine monophosphate (cAMP) and the expressions of β1-adrenoceptor (AR) and SERCA 2a were determined.
RESULTSCardiac output, left ventricular dp/dtmax and negative dp/dtmax were significantly higher in the SFI group than in the SA and EPI groups at 4 and 6 h after ROSC. The expression of β1-AR and SERCA2a at 24 h after ROSC were significantly higher in the SFI group than in the SA and EPI groups (P<0.05 or P<0.01).
CONCLUSIONSThe administration of epinephrine during CPR decreased the expression of SERCA2a and aggravated postresuscitation myocardial function (P<0.01). SFI attenuated post-resuscitation myocardial dysfunction, and the mechanism might be related to the up-regulation of SERCA2a expression.
Adenylyl Cyclases ; metabolism ; Animals ; Blotting, Western ; Cardiac Output ; drug effects ; Cardiopulmonary Resuscitation ; Cyclic AMP ; metabolism ; Dopamine ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Enzyme-Linked Immunosorbent Assay ; Epinephrine ; blood ; Heart Ventricles ; drug effects ; metabolism ; physiopathology ; Hemodynamics ; drug effects ; Injections ; Male ; Myocardium ; enzymology ; pathology ; Norepinephrine ; blood ; Receptors, Adrenergic, beta-1 ; metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases ; metabolism ; Swine ; Swine, Miniature ; Up-Regulation ; drug effects
6.Lowered sarcoendoplasmic reticulum calcium uptake and diaphragmatic SERCA1 expression contribute to diaphragmatic contractile and relaxation dysfunction in septic rats.
Jian-You ZHANG ; Jin WU ; Shi-Tong LI ; Yuan GONG
Journal of Southern Medical University 2016;37(4):438-443
OBJECTIVEThe explore the mechanism responsible for diaphragmatic contractile and relaxation dysfunction in a rat model of sepsis.
METHODSThirty-six adult male Sprague-Dawley rats were randomized equally into a sham-operated group and two model groups of sepsis induced by cecal ligation and puncture (CLP) for examination at 6 and 12 h following CLP (CLP-6 h and CLP-12 h groups). The parameters of diaphragm contractile and relaxation were measured, and the calcium uptake and release rates of the diaphragmatic sarcoendoplasmic reticulum (SR) and the protein expressions of SERCA1, SERCA2 and RyR in the diaphragmatic muscles were determined.
RESULTSThe half-relaxation time of the diaphragm was extended in both the CLP-6 h and CLP-12 h groups with significantly reduced maximum tension declinerate and the peek uptake rate of SERCA (P<0.01). Diaphragmatic maximum twitch force development rate, the maximal twitch, tetanus tensions and the peek release rate of SR decreased only at 12h after CLP (P<0.01). The expression levels of SERCA1 protein decreased significantly in the diaphragmatic muscles at 12h following CLP (P<0.01) while SERCA2 expression level and SERCA activity showed no significant changes.
CONCLUSIONIn the acute stage of sepsis, both the contractile and relaxation functions of the diaphragm are impaired. Diaphragmatic relaxation dysfunction may result from reduced calcium uptake in the SR and a decreased level of SERCA1 in the diaphragmatic muscles.
Animals ; Calcium ; metabolism ; Cecum ; Diaphragm ; drug effects ; metabolism ; Endoplasmic Reticulum ; metabolism ; Ligation ; Male ; Muscle Contraction ; drug effects ; Rats ; Rats, Sprague-Dawley ; Sarcoplasmic Reticulum ; metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases ; metabolism ; Sepsis
7.Effects of hydrogen sulfide on contraction capacity of diaphragm from type 1 diabetic rats.
Qiang JIA ; Shanfeng MA ; Xiaofen LIU ; Sai LI ; Yuanyuan WANG ; Qin GAO ; Rui YANG
Journal of Central South University(Medical Sciences) 2016;41(5):496-501
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects of hydrogen sulfide (H2S) on contraction capacity of diaphragm in type 1 diabetic rats.
		                        		
		                        			METHODS:
		                        			Thirty-two male SD rats were randomly divided into a normal group (NC), a diabetic group (DM), a NaHS treatment group (DM+NaHS) and a NaHS group (NaHS) (n=8). Intraperitoneal injection of streptozotocin was utilized to establish diabetic rat model. After the modeling, the rats in the DM+NaHS and the NaHS groups were intraperitoneally injected with 28 μmol/kg NaHS solution. 8 weeks later, the diaphragm contractility was assessed by isolated draphragm strips perfusion. The peak twitch tension (Pt), maximum tetanic tension (Po) and maximal rates of contraction/relaxation (±dT/dtmax) were determined. The alterations in diaphragm ultrastructure were observed under electron microscopy. The diaphragm weight/body weight (DW/BW) was measured. The activities of succinic dehydrogenase (SDH), lactate dehydrogenase (LDH) and sarcoplasmic reticulum Ca2+ ATPase (SERCA) were analyzed by spectrophotometric method. The mRNA levels of SERCA and prospholamban (PLB) in diaphragm were detected by RT-PCR.
		                        		
		                        			RESULTS:
		                        			Compared with the NC group, there was no significant change in all measured index in the NaHS group (P>0.05), while Pt, Po and ±dT/dtmax were significantly decreased in the DM group (P<0.05). Transmission electron microscopy revealed obvious ultrastructural changes in the diaphragm. The DW/BW ratio and the activities of SDH, LDH and SERCA were decreased. The SERCA mRNA was decreased, while PLB mRNA was increased. Compared with the DM group, the diaphragm contractility and ultrastructure damage were improved in the DM+NaHS group. The DW/BW ratio and the activities of SDH, LDH and SERCA were increased. The SERCA mRNA was increased, while PLB mRNA was decreased (all P<0.05).
		                        		
		                        			CONCLUSION
		                        			H(2)S can enhance the contraction capacity of diaphragm in type 1 diabetic rats, which is involved in regulating the activities of biological enzymes and the gene expressions of calcium regulatory proteins.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Diaphragm
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			ultrastructure
		                        			;
		                        		
		                        			Hydrogen Sulfide
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			L-Lactate Dehydrogenase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Muscle Contraction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum Calcium-Transporting ATPases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Succinate Dehydrogenase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sulfides
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
8.Decreased expression of calcium-sensing receptor involved in the progression of diabetic cardiomyopathy.
Zhen JIA ; Jian SUN ; Hong-zhu LI ; Hong-xia LI ; Xue PENG ; Hong-jiang SHAO ; Jin-xia YANG ; Chang-qing XU ; Shu-zhi BAI
Chinese Journal of Applied Physiology 2015;31(1):35-37
OBJECTIVETo observe the dynamic expression of calcium-sensing receptor(CaSR) in myocardium of diabetic rats.
METHODSThirty male Wistar rats were randomly divided into 3 groups including control, diabetic-4 week and diabetic-8 week groups(n = 10). The type 2 diabetes mellitus models were established by intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) after high-fat and high-sugar diet for one month. The cardiac morphology was observed by electron microscope. Western blot analyzed the expression of CaSR, phospholamban (PLN), a calcium handling regulator, and Ca+-ATPase(SERCA) in cardiac tissues.
RESULTSCompared with control group, the expressions of CaSR and SERCA were decreased, while the expression of PLN was significantly increased in a time-dependent manner in diabetic groups. Meanwhile diabetic rats displayed abnormal cardiac structure.
CONCLUSIONThese results indicate that the CaSR expression of myocardium is reduced in the progression of DCM, and its potential mechanism may be related to the imnaired intracellular calcium homeostasis.
Animals ; Calcium-Binding Proteins ; metabolism ; Diabetes Mellitus, Experimental ; complications ; Diabetes Mellitus, Type 2 ; Diabetic Cardiomyopathies ; metabolism ; physiopathology ; Disease Progression ; Heart ; physiopathology ; Male ; Myocardium ; metabolism ; pathology ; Rats ; Rats, Wistar ; Receptors, Calcium-Sensing ; metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases ; metabolism ; Streptozocin
9.Abnormal calcium re-uptake in myocardium sarcoplasmic reticulum in rabbits with heart failure and the influencing factors.
Lei WANG ; ; Shi-Jie ZHANG ; Li LI ; Chao LAN ; Rui ZHANG ; Zhi-Hua LIU
Acta Physiologica Sinica 2014;66(4):483-488
		                        		
		                        			
		                        			The aim of the present study was to investigate the abnormal calcium re-uptake function of myocardium sarcoplasmic reticulum (SR) in rabbits with heart failure, as well as potential mechanisms. Heart failure model was established in rabbits through aortic insufficiency and constriction of abdominal aorta. The SR Ca(2+) re-uptake function was measured with a calcium imaging device. The activity of myocardium SR calcium adenodine triphosphatase 2a (SERCA2a) was measured by inorganic phosphate. The protein expressions of SERCA2a, CaMKII, PKA, PP1α, phospholamban (PLB), PLB-Ser(16) and PLB-Thr(17) were evaluated by Western blot. The activities of PKA and CaMKII were detected by γ-(32)P substrate incorporation. The results showed that, compared with the sham operation group, the heart failure group exhibited reduced Ca(2+) re-uptake amount (P < 0.01) and the expression and activity of SERCA2a (P < 0.05 or P < 0.01), decreased expression of PLB and its phosphorylation status in sites of Ser(16) and Thr(17) (P < 0.05), increased expressions and activities of PKA and CaMKII (P < 0.05 or P < 0.01), and increased expression of PP1α (P < 0.05). These results suggest that the abnormal Ca(2+) re-uptake function in heart failure is related with reduced expression and activities of SERCA2a, as well as reduced expression of PLB and its phosphorylation status. Both PLB-Ser(16) and -Thr(17) may be involved in the regulation of myocardium SR calcium pump activity in heart failure.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium-Binding Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Heart Failure
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Myocardium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
10.Decreased amplitude of Ca²⁺i elevation induced by menthol in pulmonary arterial smooth muscle cells of pulmonary hypertensive rats.
Gai-Ying CHEN ; Hai-Xia JIAO ; Ming-Yue WANG ; Rui-Xing WANG ; Mo-Jun LIN
Acta Physiologica Sinica 2014;66(3):267-275
		                        		
		                        			
		                        			The study was designed to explore the alteration of intracellular calcium concentration ([Ca²⁺]i), induced by transient receptor potential melastatin 8 (TRPM8) channel-specific agonist menthol, in pulmonary arterial smooth muscle cells (PASMCs) between control and pulmonary hypertensive (PH) rats. PH rat models were established by means of chronic hypoxia (CH) and monocrotaline (MCT) injection, respectively. PASMCs from control and PH rats were cultured. The change of [Ca²⁺]i in PASMCs induced by menthol, and the effect of TRPM8 channel-specific antagonist BCTC on the change of [Ca²⁺]i, were observed. Cellular localization of TRPM8 was examined by using immunohistochemistry. Results showed that menthol increased [Ca²⁺]i in the control PASMCs both in Ca²⁺ -normal and Ca²⁺ - free Tyrode's solutions, and at the same time BCTC could inhibit these two kinds of elevations. Compared with the control group, elevations of [Ca²⁺]i were decreased notably in CH- and MCT-pretreated PASMCs superfused with 2 mmol/L Ca²⁺ - or 0 Ca²⁺ -Tyrode's solutions. Immunohistochemical localization experiments showed that the whole PASMCs were dyed brown except for the nucleus. This study verified that TRPM8 exists both in membrane and sarcoplasmic reticulum of PASMCs. In addition, CH- and MCT-pretreatment could independently down-regulate the Ca²⁺ influx and Ca²⁺ release mediated by TRPM8 channel.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Menthol
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pulmonary Artery
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			TRPM Cation Channels
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail