1.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
		                        		
		                        			 Purpose:
		                        			This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging. 
		                        		
		                        			Methods:
		                        			In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions. 
		                        		
		                        			Results:
		                        			The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120). 
		                        		
		                        			Conclusion
		                        			The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images. 
		                        		
		                        		
		                        		
		                        	
2.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
		                        		
		                        			
		                        			 The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea. 
		                        		
		                        		
		                        		
		                        	
3.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
		                        		
		                        			 Purpose:
		                        			This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging. 
		                        		
		                        			Methods:
		                        			In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions. 
		                        		
		                        			Results:
		                        			The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120). 
		                        		
		                        			Conclusion
		                        			The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images. 
		                        		
		                        		
		                        		
		                        	
4.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
		                        		
		                        			 Purpose:
		                        			This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging. 
		                        		
		                        			Methods:
		                        			In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions. 
		                        		
		                        			Results:
		                        			The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120). 
		                        		
		                        			Conclusion
		                        			The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images. 
		                        		
		                        		
		                        		
		                        	
5.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
		                        		
		                        			
		                        			 The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea. 
		                        		
		                        		
		                        		
		                        	
6.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
		                        		
		                        			 Purpose:
		                        			This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging. 
		                        		
		                        			Methods:
		                        			In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions. 
		                        		
		                        			Results:
		                        			The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120). 
		                        		
		                        			Conclusion
		                        			The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images. 
		                        		
		                        		
		                        		
		                        	
7.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
		                        		
		                        			
		                        			 The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea. 
		                        		
		                        		
		                        		
		                        	
8.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
		                        		
		                        			 Purpose:
		                        			This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging. 
		                        		
		                        			Methods:
		                        			In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions. 
		                        		
		                        			Results:
		                        			The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120). 
		                        		
		                        			Conclusion
		                        			The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images. 
		                        		
		                        		
		                        		
		                        	
10.A Rare Case of Hamartoma in Nasolacrimal Duct
Gyeong Min LEE ; Sangwon JUNG ; Yeon Bi HAN ; Namju KIM
Korean Journal of Ophthalmology 2024;38(3):266-268
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail