1.Comparison of Population Attributable Fractions of Cancer Incidence and Mortality Linked to Excess Body Weight in Korea from 2015 to 2030
Youjin HONG ; Jihye AN ; Jeehi JUNG ; Hyeon Sook LEE ; Soseul SUNG ; Sungji MOON ; Inah KIM ; Jung Eun LEE ; Aesun SHIN ; Sun Ha JEE ; Sun-Seog KWEON ; Min-Ho SHIN ; Sangmin PARK ; Seung-Ho RYU ; Sun Young YANG ; Seung Ho CHOI ; Jeongseon KIM ; Sang-Wook YI ; Yoon-Jung CHOI ; Sangjun LEE ; Woojin LIM ; Kyungsik KIM ; Sohee PARK ; Jeong-Soo IM ; Hong Gwan SEO ; Kwang-Pil KO ; Sue K. PARK
Endocrinology and Metabolism 2024;39(6):921-931
Background:
The increasing rate of excess body weight (EBW) in the global population has led to growing health concerns, including cancer-related EBW. We aimed to estimate the population attributable fraction (PAF) of cancer incidence and deaths linked to EBW in Korean individuals from 2015 to 2030 and to compare its value with various body mass index cutoffs.
Methods:
Levin’s formula was used to calculate the PAF; the prevalence rates were computed using the Korean National Health and Nutrition Examination Survey data, while the relative risks of specific cancers related to EBW were estimated based on the results of Korean cohort studies. To account for the 15-year latency period when estimating the PAF in 2020, the prevalence rates from 2015 and attributable cases or deaths from 2020 were used.
Results:
The PAF attributed to EBW was similar for both cancer incidence and deaths using either the World Health Organization (WHO) Asian-Pacific region standard or a modified Asian standard, with the WHO standard yielding the lowest values. In the Korean population, the PAFs of EBW for cancer incidence were 2.96% in men and 3.61% in women, while those for cancer deaths were 0.67% in men and 3.06% in women in 2020. Additionally, PAFs showed a gradual increase in both sexes until 2030.
Conclusion
The EBW continues to have a significant impact on cancer incidence and deaths in Korea. Effective prevention strategies targeting the reduction of this modifiable risk factor can substantially decrease the cancer burden.
2.Comparison of Population Attributable Fractions of Cancer Incidence and Mortality Linked to Excess Body Weight in Korea from 2015 to 2030
Youjin HONG ; Jihye AN ; Jeehi JUNG ; Hyeon Sook LEE ; Soseul SUNG ; Sungji MOON ; Inah KIM ; Jung Eun LEE ; Aesun SHIN ; Sun Ha JEE ; Sun-Seog KWEON ; Min-Ho SHIN ; Sangmin PARK ; Seung-Ho RYU ; Sun Young YANG ; Seung Ho CHOI ; Jeongseon KIM ; Sang-Wook YI ; Yoon-Jung CHOI ; Sangjun LEE ; Woojin LIM ; Kyungsik KIM ; Sohee PARK ; Jeong-Soo IM ; Hong Gwan SEO ; Kwang-Pil KO ; Sue K. PARK
Endocrinology and Metabolism 2024;39(6):921-931
Background:
The increasing rate of excess body weight (EBW) in the global population has led to growing health concerns, including cancer-related EBW. We aimed to estimate the population attributable fraction (PAF) of cancer incidence and deaths linked to EBW in Korean individuals from 2015 to 2030 and to compare its value with various body mass index cutoffs.
Methods:
Levin’s formula was used to calculate the PAF; the prevalence rates were computed using the Korean National Health and Nutrition Examination Survey data, while the relative risks of specific cancers related to EBW were estimated based on the results of Korean cohort studies. To account for the 15-year latency period when estimating the PAF in 2020, the prevalence rates from 2015 and attributable cases or deaths from 2020 were used.
Results:
The PAF attributed to EBW was similar for both cancer incidence and deaths using either the World Health Organization (WHO) Asian-Pacific region standard or a modified Asian standard, with the WHO standard yielding the lowest values. In the Korean population, the PAFs of EBW for cancer incidence were 2.96% in men and 3.61% in women, while those for cancer deaths were 0.67% in men and 3.06% in women in 2020. Additionally, PAFs showed a gradual increase in both sexes until 2030.
Conclusion
The EBW continues to have a significant impact on cancer incidence and deaths in Korea. Effective prevention strategies targeting the reduction of this modifiable risk factor can substantially decrease the cancer burden.
3.Comparison of Population Attributable Fractions of Cancer Incidence and Mortality Linked to Excess Body Weight in Korea from 2015 to 2030
Youjin HONG ; Jihye AN ; Jeehi JUNG ; Hyeon Sook LEE ; Soseul SUNG ; Sungji MOON ; Inah KIM ; Jung Eun LEE ; Aesun SHIN ; Sun Ha JEE ; Sun-Seog KWEON ; Min-Ho SHIN ; Sangmin PARK ; Seung-Ho RYU ; Sun Young YANG ; Seung Ho CHOI ; Jeongseon KIM ; Sang-Wook YI ; Yoon-Jung CHOI ; Sangjun LEE ; Woojin LIM ; Kyungsik KIM ; Sohee PARK ; Jeong-Soo IM ; Hong Gwan SEO ; Kwang-Pil KO ; Sue K. PARK
Endocrinology and Metabolism 2024;39(6):921-931
Background:
The increasing rate of excess body weight (EBW) in the global population has led to growing health concerns, including cancer-related EBW. We aimed to estimate the population attributable fraction (PAF) of cancer incidence and deaths linked to EBW in Korean individuals from 2015 to 2030 and to compare its value with various body mass index cutoffs.
Methods:
Levin’s formula was used to calculate the PAF; the prevalence rates were computed using the Korean National Health and Nutrition Examination Survey data, while the relative risks of specific cancers related to EBW were estimated based on the results of Korean cohort studies. To account for the 15-year latency period when estimating the PAF in 2020, the prevalence rates from 2015 and attributable cases or deaths from 2020 were used.
Results:
The PAF attributed to EBW was similar for both cancer incidence and deaths using either the World Health Organization (WHO) Asian-Pacific region standard or a modified Asian standard, with the WHO standard yielding the lowest values. In the Korean population, the PAFs of EBW for cancer incidence were 2.96% in men and 3.61% in women, while those for cancer deaths were 0.67% in men and 3.06% in women in 2020. Additionally, PAFs showed a gradual increase in both sexes until 2030.
Conclusion
The EBW continues to have a significant impact on cancer incidence and deaths in Korea. Effective prevention strategies targeting the reduction of this modifiable risk factor can substantially decrease the cancer burden.
4.Comparison of Population Attributable Fractions of Cancer Incidence and Mortality Linked to Excess Body Weight in Korea from 2015 to 2030
Youjin HONG ; Jihye AN ; Jeehi JUNG ; Hyeon Sook LEE ; Soseul SUNG ; Sungji MOON ; Inah KIM ; Jung Eun LEE ; Aesun SHIN ; Sun Ha JEE ; Sun-Seog KWEON ; Min-Ho SHIN ; Sangmin PARK ; Seung-Ho RYU ; Sun Young YANG ; Seung Ho CHOI ; Jeongseon KIM ; Sang-Wook YI ; Yoon-Jung CHOI ; Sangjun LEE ; Woojin LIM ; Kyungsik KIM ; Sohee PARK ; Jeong-Soo IM ; Hong Gwan SEO ; Kwang-Pil KO ; Sue K. PARK
Endocrinology and Metabolism 2024;39(6):921-931
Background:
The increasing rate of excess body weight (EBW) in the global population has led to growing health concerns, including cancer-related EBW. We aimed to estimate the population attributable fraction (PAF) of cancer incidence and deaths linked to EBW in Korean individuals from 2015 to 2030 and to compare its value with various body mass index cutoffs.
Methods:
Levin’s formula was used to calculate the PAF; the prevalence rates were computed using the Korean National Health and Nutrition Examination Survey data, while the relative risks of specific cancers related to EBW were estimated based on the results of Korean cohort studies. To account for the 15-year latency period when estimating the PAF in 2020, the prevalence rates from 2015 and attributable cases or deaths from 2020 were used.
Results:
The PAF attributed to EBW was similar for both cancer incidence and deaths using either the World Health Organization (WHO) Asian-Pacific region standard or a modified Asian standard, with the WHO standard yielding the lowest values. In the Korean population, the PAFs of EBW for cancer incidence were 2.96% in men and 3.61% in women, while those for cancer deaths were 0.67% in men and 3.06% in women in 2020. Additionally, PAFs showed a gradual increase in both sexes until 2030.
Conclusion
The EBW continues to have a significant impact on cancer incidence and deaths in Korea. Effective prevention strategies targeting the reduction of this modifiable risk factor can substantially decrease the cancer burden.
5.A Comparison of Green, Delta, and Monte Carlo Methods to Select an Optimal Approach for Calculating the 95% Confidence Interval of the Population-attributable Fraction: Guidance for Epidemiological Research
Sangjun LEE ; Sungji MOON ; Kyungsik KIM ; Soseul SUNG ; Youjin HONG ; Woojin LIM ; Sue K. PARK
Journal of Preventive Medicine and Public Health 2024;57(5):499-507
Objectives:
This study aimed to compare the Delta, Greenland, and Monte Carlo methods for estimating 95% confidence intervals (CIs) of the population-attributable fraction (PAF). The objectives were to identify the optimal method and to determine the influence of primary parameters on PAF calculations.
Methods:
A dataset was simulated using hypothetical values for primary parameters (population, relative risk [RR], prevalence, and variance of the beta estimator ) involved in PAF calculations. Three methods (Delta, Greenland, and Monte Carlo) were used to estimate the 95% CIs of the PAFs. Perturbation analysis was performed to assess the sensitivity of the PAF to changes in these parameters. An R Shiny application, the “GDM-PAF CI Explorer,” was developed to facilitate the analysis and visualization of these computations.
Results:
No significant differences were observed among the 3 methods when both the RR and p-value were low. The Delta method performed well under conditions of low prevalence or minimal RR, while Greenland’s method was effective in scenarios with high prevalence. Meanwhile, the Monte Carlo method calculated 95% CIs of PAFs that were stable overall, though it required intensive computational resources. In a novel approach that utilized perturbation for sensitivity analysis, was identified as the most influential parameter in the estimation of CIs.
Conclusions
This study emphasizes the necessity of a careful approach for comparing 95% CI estimation methods for PAFs and selecting the method that best suits the context. It provides practical guidelines to researchers to increase the reliability and accuracy of epidemiological studies.
6.Immunomodulation for Tissue Repair and Regeneration
Sangjun MOON ; Jihye HONG ; Seokhyeong GO ; Byung-Soo KIM
Tissue Engineering and Regenerative Medicine 2023;20(3):389-409
Various immune cells participate in repair and regeneration following tissue injury or damage, orchestrating tissue inflammation and regeneration processes. A deeper understanding of the immune system’s involvement in tissue repair and regeneration is critical for the development of successful reparatory and regenerative strategies. Here we review recent technologies that facilitate cell-based and biomaterial-based modulation of the immune systems for tissue repair and regeneration. First, we summarize the roles of various types of immune cells in tissue repair. Second, we review the principle, examples, and limitations of regulatory T (Treg) cell-based therapy, a representative cell-based immunotherapy.Finally, we discuss biomaterial-based immunotherapy strategies that aim to modulate immune cells using various biomaterials for tissue repair and regeneration.
7.Projection of Cancer Incidence and Mortality From 2020 to 2035 in the Korean Population Aged 20 Years and Older
Youjin HONG ; Sangjun LEE ; Sungji MOON ; Soseul SUNG ; Woojin LIM ; Kyungsik KIM ; Seokyung AN ; Jeoungbin CHOI ; Kwang-Pil KO ; Inah KIM ; Jung Eun LEE ; Sue K. PARK
Journal of Preventive Medicine and Public Health 2022;55(6):529-538
Objectives:
This study aimed to identify the current patterns of cancer incidence and estimate the projected cancer incidence and mortality between 2020 and 2035 in Korea.
Methods:
Data on cancer incidence cases were extracted from the Korean Statistical Information Service from 2000 to 2017, and data on cancer-related deaths were extracted from the National Cancer Center from 2000 to 2018. Cancer cases and deaths were classified according to the International Classification of Diseases, 10th edition. For the current patterns of cancer incidence, age-standardized incidence rates (ASIRs) and age-standardized mortality rates were investigated using the 2000 mid-year estimated population aged over 20 years and older. A joinpoint regression model was used to determine the 2020 to 2035 trends in cancer.
Results:
Overall, cancer cases were predicted to increase from 265 299 in 2020 to 474 085 in 2035 (growth rate: 1.8%). The greatest increase in the ASIR was projected for prostate cancer among male (7.84 vs. 189.53 per 100 000 people) and breast cancer among female (34.17 vs. 238.45 per 100 000 people) from 2000 to 2035. Overall cancer deaths were projected to increase from 81 717 in 2020 to 95 845 in 2035 (average annual growth rate: 1.2%). Although most cancer mortality rates were projected to decrease, those of breast, pancreatic, and ovarian cancer among female were projected to increase until 2035.
Conclusions
These up-to-date projections of cancer incidence and mortality in the Korean population may be a significant resource for implementing cancer-related regulations or developing cancer treatments.
8.Multilayered Cell Sheets of Cardiac Reprogrammed Cells for the Evaluation of Drug Cytotoxicity
Sung Pil KWON ; Seuk Young SONG ; Jin YOO ; Han Young KIM ; Ju-Ro LEE ; Mikyung KANG ; Hee Su SOHN ; Seokhyoung GO ; Mungyo JUNG ; Jihye HONG ; Songhyun LIM ; Cheesue KIM ; Sangjun MOON ; Kookheon CHAR ; Byung-Soo KIM
Tissue Engineering and Regenerative Medicine 2021;18(5):807-818
BACKGROUND:
Various cell-culture systems have been used to evaluate drug toxicity in vitro. However, factors that affect cytotoxicity outcomes in drug toxicity evaluation systems remain elusive. In this study, we used multilayered sheets of cardiac-mimetic cells, which were reprogrammed from human fibroblasts, to investigate the effects of the layer number on drug cytotoxicity outcomes.
METHODS:
Cell sheets of cardiac-mimetic cells were fabricated by reprogramming of human fibroblasts into cardiacmimetic cells via coculture with cardiac cells and electric stimulation, as previously described. Double-layered cell sheets were prepared by stacking the cell sheets. The mono- and double-layered cell sheets were treated with 5-fluorouracil (5-FU), an anticancer drug, in vitro. Subsequently, apoptosis and lipid peroxidation were analyzed. Furthermore, effects of cardiacmimetic cell density on cytotoxicity outcomes were evaluated by culturing cells in monolayer at various cell densities.
RESULTS:
The double-layered cell sheets exhibited lower cytotoxicity in terms of apoptosis and lipid peroxidation than the mono-layered sheets at the same 5-FU dose. In addition, the double-layered cell sheets showed better preservation of mitochondrial function and plasma membrane integrity than the monolayer sheets. The lower cytotoxicity outcomes in the double-layered cell sheets may be due to the higher intercellular interactions, as the cytotoxicity of 5-FU decreased with cell density in monolayer cultures of cardiac-mimetic cells.
CONCLUSION
The layer number of cardiac-mimetic cell sheets affects drug cytotoxicity outcomes in drug toxicity tests.The in vitro. cellular configuration that more closely mimics the in vivo configuration in the evaluation systems seems to exhibit lower cytotoxicity in response to drug.
9.Multilayered Cell Sheets of Cardiac Reprogrammed Cells for the Evaluation of Drug Cytotoxicity
Sung Pil KWON ; Seuk Young SONG ; Jin YOO ; Han Young KIM ; Ju-Ro LEE ; Mikyung KANG ; Hee Su SOHN ; Seokhyoung GO ; Mungyo JUNG ; Jihye HONG ; Songhyun LIM ; Cheesue KIM ; Sangjun MOON ; Kookheon CHAR ; Byung-Soo KIM
Tissue Engineering and Regenerative Medicine 2021;18(5):807-818
BACKGROUND:
Various cell-culture systems have been used to evaluate drug toxicity in vitro. However, factors that affect cytotoxicity outcomes in drug toxicity evaluation systems remain elusive. In this study, we used multilayered sheets of cardiac-mimetic cells, which were reprogrammed from human fibroblasts, to investigate the effects of the layer number on drug cytotoxicity outcomes.
METHODS:
Cell sheets of cardiac-mimetic cells were fabricated by reprogramming of human fibroblasts into cardiacmimetic cells via coculture with cardiac cells and electric stimulation, as previously described. Double-layered cell sheets were prepared by stacking the cell sheets. The mono- and double-layered cell sheets were treated with 5-fluorouracil (5-FU), an anticancer drug, in vitro. Subsequently, apoptosis and lipid peroxidation were analyzed. Furthermore, effects of cardiacmimetic cell density on cytotoxicity outcomes were evaluated by culturing cells in monolayer at various cell densities.
RESULTS:
The double-layered cell sheets exhibited lower cytotoxicity in terms of apoptosis and lipid peroxidation than the mono-layered sheets at the same 5-FU dose. In addition, the double-layered cell sheets showed better preservation of mitochondrial function and plasma membrane integrity than the monolayer sheets. The lower cytotoxicity outcomes in the double-layered cell sheets may be due to the higher intercellular interactions, as the cytotoxicity of 5-FU decreased with cell density in monolayer cultures of cardiac-mimetic cells.
CONCLUSION
The layer number of cardiac-mimetic cell sheets affects drug cytotoxicity outcomes in drug toxicity tests.The in vitro. cellular configuration that more closely mimics the in vivo configuration in the evaluation systems seems to exhibit lower cytotoxicity in response to drug.
10.Sex-specific Associations Between Serum Hemoglobin Levels and the Risk of Cause-specific Death in Korea Using the National Health Insurance Service-National Health Screening Cohort (NHIS HEALS)
Yoonsuk AN ; Jieun JANG ; Sangjun LEE ; Sungji MOON ; Sue K PARK
Journal of Preventive Medicine and Public Health 2019;52(6):393-404
OBJECTIVES:
The purpose of this study was to determine the associations between blood hemoglobin (Hgb) levels and the risk of death by specific causes.
METHODS:
Using the National Health Insurance Services-National Health Screening Cohort (n=487 643), we classified serum Hgb levels into 6 sex-specific groups. Cox regression analysis was used to analyze the associations between Hgb levels and the risk of cause-specific death.
RESULTS:
Hgb levels in male population showed a U-shaped, J-shaped, or inverse J-shaped association with the risk of death from ischemic heart disease, acute myocardial infarction, liver cancer, cirrhosis and chronic obstructive pulmonary disease (COPD) (all non-linear p<0.05; hazard ratio [HR]; 95% confidence interval [CI]) for the lowest and the highest Hgb levels for the risk of each cause of death in male population: HR, 1.14; 95% CI, 0.98 to 1.34; HR, 2.87; 95% CI, 1.48 to 5.57; HR, 1.16; 95% CI, 0.96 to 1.40; HR, 3.05; 95% CI, 1.44 to 6.48; HR, 1.36; 95% CI, 1.18 to 1.56; HR, 2.11; 95% CI, 1.05 to 4.26; HR, 3.64; 95% CI, 2.49 to 5.33; HR, 5.97; 95% CI, 1.44 to 24.82; HR, 1.62; 95% CI, 1.14 to 2.30; HR, 3.84; 95% CI, 1.22 to 12.13, respectively), while in female population, high Hgb levels were associated with a lower risk of death from hypertension and a higher risk of death from COPD (overall p<0.05; HR, 1.86; 95% CI, 1.29 to 2.67 for the lowest Hgb levels for hypertension; overall p<0.01, HR, 6.60; 95% CI, 2.37 to 18.14 for the highest Hgb levels for COPD). For the risk of lung cancer death by Hgb levels, a linear negative association was found in male population (overall p<0.01; the lowest Hgb levels, HR, 1.17; 95% CI, 1.05 to 1.33) but an inverse J-shaped association was found in female population (non-linear p=0.01; HR, 1.25; 95% CI, 0.96 to 1.63; HR, 2.58; 95% CI, 1.21 to 5.50).
CONCLUSIONS
Both low and high Hgb levels were associated with an increased risk of death from various causes, and some diseases showed different patterns according to sex.

Result Analysis
Print
Save
E-mail