1.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
2.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
3.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
4.CTLA4 expression profiles and their association with clinical outcomes of breast cancer: a systemic review
TongYi JIN ; Kyoung Sik PARK ; Sang Eun NAM ; Seung Hwan LIM ; Jong Hyun KIM ; Woo Chul NOH ; Young Bum YOO ; Won Seo PARK ; Ik Jin YUN
Annals of Surgical Treatment and Research 2024;106(5):263-273
Purpose:
The cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is involved in the progression of various cancers, but its biological roles in breast cancer (BRCA) remain unclear. Therefore, we performed a systematic multiomic analysis to expound on the prognostic value and underlying mechanism of CTLA4 in BRCA.
Methods:
We assessed the effect of CTLA4 expression on BRCA using a variety of bioinformatics platforms, including Oncomine, GEPIA, UALCAN, PrognoScan database, Kaplan-Meier plotter, and R2: Kaplan-Meier scanner.
Results:
CTLA4 was highly expressed in BRCA tumor tissue compared to normal tissue (P < 0.01). The CTLA4 messenger RNA levels in BRCA based on BRCA subtypes of Luminal, human epidermal growth factor receptor 2, and triple-negative BRCA were considerably higher than in normal tissues (P < 0.001). However, the overexpression of CTLA4 was associated with a better prognosis in BRCA (P < 0.001) and was correlated with clinicopathological characteristics including age, T stage, estrogen receptors, progesterone receptors, and prediction analysis of microarray 50 (P < 0.01). The infiltration of multiple immune cells was associated with increased CTLA4 expression in BRCA (P < 0.001). CTLA4 was highly enriched in antigen binding, immunoglobulin complexes, lymphocyte-mediated immunity, and cytokine-cytokine receptor interaction.
Conclusion
This study provides suggestive evidence of the prognostic role of CTLA4 in BRCA, which may be a therapeutic target for BRCA. Furthermore, CTLA4 may influence BRCA prognosis through antigen binding, immunoglobulin complexes, lymphocyte-mediated immunity, and cytokine-cytokine receptor interaction. These findings help us understand how CTLA4 plays a role in BRCA and set the stage for more research.
5.Immune Cells Are DifferentiallyAffected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice
Jung Ah KIM ; Sung-Hee KIM ; Jeong Jin KIM ; Hyuna NOH ; Su-bin LEE ; Haengdueng JEONG ; Jiseon KIM ; Donghun JEON ; Jung Seon SEO ; Dain ON ; Suhyeon YOON ; Sang Gyu LEE ; Youn Woo LEE ; Hui Jeong JANG ; In Ho PARK ; Jooyeon OH ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seung-Min HONG ; Se-Hee AN ; Joon-Yong BAE ; Jung-ah CHOI ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Hyo-Jung LEE ; Hong Bin KIM ; Dae Gwin JEONG ; Daesub SONG ; Manki SONG ; Man-Seong PARK ; Kang-Seuk CHOI ; Jun Won PARK ; Jun-Won YUN ; Jeon-Soo SHIN ; Ho-Young LEE ; Ho-Keun KWON ; Jun-Young SEO ; Ki Taek NAM ; Heon Yung GEE ; Je Kyung SEONG
Immune Network 2024;24(2):e7-
Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019.In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virusinfected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.
6.Alterations of Structural Network Efficiency in Early-Onset and Late-Onset Alzheimer’s Disease
Suyeon HEO ; Cindy W YOON ; Sang-Young KIM ; Woo-Ram KIM ; Duk L. NA ; Young NOH
Journal of Clinical Neurology 2024;20(3):265-275
Background:
and Purpose Early- and late-onset Alzheimer’s disease (EOAD and LOAD, respectively) share the same neuropathological hallmarks of amyloid and neurofibrillary tangles but have distinct cognitive features. We compared structural brain connectivity between the EOAD and LOAD groups using structural network efficiency and evaluated the association of structural network efficiency with the cognitive profile and pathological markers of Alzheimer’s disease (AD).
Methods:
The structural brain connectivity networks of 80 AD patients (47 with EOAD and 33 with LOAD) and 57 healthy controls were reconstructed using diffusion-tensor imaging.Graph-theoretic indices were calculated and intergroup differences were evaluated. Correlations between network parameters and neuropsychological test results were analyzed. The correlations of the amyloid and tau burdens with network parameters were evaluated for the patients and controls.
Results:
Compared with the age-matched control group, the EOAD patients had increased global path length and decreased global efficiency, averaged local efficiency, and averaged clustering coefficient. In contrast, no significant differences were found in the LOAD patients. Locally, the EOAD patients showed decreases in local efficiency and the clustering coefficient over a wide area compared with the control group, whereas LOAD patients showed such decreases only within a limited area. Changes in network parameters were significantly correlated with multiple cognitive domains in EOAD patients, but only with Clinical Dementia Rating Sum-of-Boxes scores in LOAD patients. Finally, the tau burden was correlated with changes in network parameters in AD signature areas in both patient groups, while there was no correlation with the amyloid burden.
Conclusions
The impairment of structural network efficiency and its effects on cognition may differ between EOAD and LOAD.
7.Pre-hospital Korean Triage and Acuity Scale: the results of first and second pilot projects
Changshin KANG ; Han Joo CHOI ; Sang-Il KIM ; Yong Oh KIM ; Jung-Youn KIM ; Jungho KIM ; Hyun NOH ; Hyun Ho RYU ; Jung Hee WEE ; Gyuuk HWANG ; Ki Jeong HONG ; Jae Yun AHN ; Chun Song YOUN ; Eunsil KO ; Minhee LEE ; Sung-keun KO ; Tae Young LEE ; Eul Hee ROH ; Joonbum PARK
Journal of the Korean Society of Emergency Medicine 2024;35(1):6-15
While the Korean Triage and Acuity Scale (KTAS) was introduced in 2016 as a tool to identify patients at risk of catastrophic events, including death in the ED, the triage system for the pre-hospital stage still lacks evidence. The pre-hospital stage is characterized by time-sensitive and complex scenarios, where rapid and accurate decision-making is paramount to optimize patient outcomes. Despite the vital role of pre-hospital care providers, the invalidated and subjective current triage system consisting of 4-stages is still used at the pre-hospital stage, and hence, it needs to be modified to be more objective, standardized, and reliable. To improve the Korean emergency medical system, the pre-hospital KTAS (Pre-KTAS) was developed in 2020, and then two pilot projects were conducted in 2022 and 2023. This paper not only reveals the results of the first and second pilot projects for Pre-KTAS but also highlights the potential benefits of using this newly developed triage tool in the pre-hospital setting. Furthermore, this paper suggests ways to improve the emergency medical system (EMS) in Korea by improving patient safety, resource allocation, and overall emergency response efficiency.
8.Synovium-Derived Mesenchymal Stem Cell-Based Scaffold-Free Fibrocartilage Engineering for Bone–Tendon Interface Healing in an Anterior Cruciate Ligament Reconstruction Model
Sujin NOH ; Sang Jin LEE ; James J. YOO ; Yong Jun JIN ; Hee-Woong YUN ; Byoung-Hyun MIN ; Jae-Young PARK ; Do Young PARK
Tissue Engineering and Regenerative Medicine 2024;21(2):341-351
BACKGROUND:
Current tendon and ligament reconstruction surgeries rely on scar tissue healing which differs from native bone-to-tendon interface (BTI) tissue. We aimed to engineer Synovium-derived mesenchymal stem cells (Sy-MSCs) based scaffold-free fibrocartilage constructs and investigate in vivo bone–tendon interface (BTI) healing efficacy in a rat anterior cruciate ligament (ACL) reconstruction model.
METHODS:
Sy-MSCs were isolated from knee joint of rats. Scaffold-free sy-MSC constructs were fabricated and cultured in differentiation media including TGF-b-only, CTGF-only, and TGF-b + CTGF. Collagenase treatment on tendon grafts was optimized to improve cell-to-graft integration. The effects of fibrocartilage differentiation and collagenase treatment on BTI integration was assessed by conducting histological staining, cell adhesion assay, and tensile testing. Finally, histological and biomechanical analyses were used to evaluate in vivo efficacy of fibrocartilage construct in a rat ACL reconstruction model.
RESULTS:
Fibrocartilage-like features were observed with in the scaffold-free sy-MSC constructs when applying TGF-band CTGF concurrently. Fifteen minutes collagenase treatment increased cellular attachment 1.9-fold compared to the Control group without affecting tensile strength. The failure stress was highest in the Col + D + group (22.494 ± 13.74 Kpa) compared to other groups at integration analysis in vitro. The ACL Recon + FC group exhibited a significant 88% increase in estimated stiffness (p = 0.0102) compared to the ACL Recon group at the 4-week postoperative period.
CONCLUSION
Scaffold-free, fibrocartilage engineering together with tendon collagenase treatment enhanced fibrocartilaginous BTI healing in ACL reconstruction.
9.CORRIGENDUM: Influence of Infrapopliteal Runoff Vessels on Primary Patency after Superficial Femoral Artery Angioplasty with Stenting in Patients with Claudication
Byeong Gwan NOH ; Young Mok PARK ; Jung Bum CHOI ; Byoung Chul LEE ; Sang Su LEE ; Hyuk Jae JUNG
Vascular Specialist International 2024;40(2):15-
10.Physical Activity-Induced Modification of the Association of Long-Term Air Pollution Exposure with the Risk of Depression in Older Adults
Woongbi PARK ; Heeseon JANG ; Juyeon KO ; Jungwoo SOHN ; Young NOH ; Sun-Young KIM ; Sang-Baek KOH ; Changsoo KIM ; Jaelim CHO
Yonsei Medical Journal 2024;65(4):227-233
Purpose:
Evidence suggests that long-term air pollution exposures may induce depression; however, the influence of physical activity on this effect is unclear. We investigated modification of the associations between air pollution exposures and depression by the intensity of physical activity.
Materials and Methods:
This cross-sectional study included 1454 Korean adults. Depression was defined as a Geriatric Depression Scale score ≥8. Concentrations of particulate matter (PM10 and PM2.5: diameter ≤10 μm and ≤2.5 μm, respectively) and nitrogen dioxide (NO2) level at each participant’s residential address were estimated. Based on metabolic equivalents, physical activity intensity was categorized as inactive, minimally active, or health-enhancing physical activity (HEPA).
Results:
Each 1-part per billion (ppb) NO2 concentration increase was significantly associated with a 6% [95% confidence interval (CI), 4%–8%] increase in depression risk. In older adults (≥65 years), a 1-ppb NO2 increase was associated (95% CI) with a 4% (1%–7%), 9% (5%–13%), and 21% (9%–33%) increase in depression risk in the inactive, minimally active, and HEPA groups, respectively. Compared with the inactive group, the minimally active (p=0.039) and HEPA groups (p=0.004) had higher NO2 exposure-associated depression risk. Associations of PM10 and PM2.5 with depression did not significantly differ by the intensity of physical activity.
Conclusion
We suggest that older adults who vigorously exercise outdoors may be susceptible to air pollution-related depression.

Result Analysis
Print
Save
E-mail