1.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
2.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
3.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
4.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
5.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
6.Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys
Jeong Hoon PARK ; Sung Gi YOON ; Jung Yeon GHEE ; Ji Ae YOO ; Jin Joo CHA ; Young Sun KANG ; Sang Youb HAN ; Yun Jae SEOL ; Jee Young HAN ; Dae Ryong CHA
Kidney Research and Clinical Practice 2024;43(6):763-773
Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
7.Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys
Jeong Hoon PARK ; Sung Gi YOON ; Jung Yeon GHEE ; Ji Ae YOO ; Jin Joo CHA ; Young Sun KANG ; Sang Youb HAN ; Yun Jae SEOL ; Jee Young HAN ; Dae Ryong CHA
Kidney Research and Clinical Practice 2024;43(6):763-773
Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
8.Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys
Jeong Hoon PARK ; Sung Gi YOON ; Jung Yeon GHEE ; Ji Ae YOO ; Jin Joo CHA ; Young Sun KANG ; Sang Youb HAN ; Yun Jae SEOL ; Jee Young HAN ; Dae Ryong CHA
Kidney Research and Clinical Practice 2024;43(6):763-773
Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
9.Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys
Jeong Hoon PARK ; Sung Gi YOON ; Jung Yeon GHEE ; Ji Ae YOO ; Jin Joo CHA ; Young Sun KANG ; Sang Youb HAN ; Yun Jae SEOL ; Jee Young HAN ; Dae Ryong CHA
Kidney Research and Clinical Practice 2024;43(6):763-773
Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
10.Gut microbiome and metabolome signatures in liver cirrhosis-related complications
Satya Priya SHARMA ; Haripriya GUPTA ; Goo-Hyun KWON ; Sang Yoon LEE ; Seol Hee SONG ; Jeoung Su KIM ; Jeong Ha PARK ; Min Ju KIM ; Dong-Hoon YANG ; Hyunjoon PARK ; Sung-Min WON ; Jin-Ju JEONG ; Ki-Kwang OH ; Jung A EOM ; Kyeong Jin LEE ; Sang Jun YOON ; Young Lim HAM ; Gwang Ho BAIK ; Dong Joon KIM ; Ki Tae SUK
Clinical and Molecular Hepatology 2024;30(4):845-862
Background/Aims:
Shifts in the gut microbiota and metabolites are interrelated with liver cirrhosis progression and complications. However, causal relationships have not been evaluated comprehensively. Here, we identified complication-dependent gut microbiota and metabolic signatures in patients with liver cirrhosis.
Methods:
Microbiome taxonomic profiling was performed on 194 stool samples (52 controls and 142 cirrhosis patients) via V3-V4 16S rRNA sequencing. Next, 51 samples (17 controls and 34 cirrhosis patients) were selected for fecal metabolite profiling via gas chromatography mass spectrometry and liquid chromatography coupled to timeof-flight mass spectrometry. Correlation analyses were performed targeting the gut-microbiota, metabolites, clinical parameters, and presence of complications (varices, ascites, peritonitis, encephalopathy, hepatorenal syndrome, hepatocellular carcinoma, and deceased).
Results:
Veillonella bacteria, Ruminococcus gnavus, and Streptococcus pneumoniae are cirrhosis-related microbiotas compared with control group. Bacteroides ovatus, Clostridium symbiosum, Emergencia timonensis, Fusobacterium varium, and Hungatella_uc were associated with complications in the cirrhosis group. The areas under the receiver operating characteristic curve (AUROCs) for the diagnosis of cirrhosis, encephalopathy, hepatorenal syndrome, and deceased were 0.863, 0.733, 0.71, and 0.69, respectively. The AUROCs of mixed microbial species for the diagnosis of cirrhosis and complication were 0.808 and 0.847, respectively. According to the metabolic profile, 5 increased fecal metabolites in patients with cirrhosis were biomarkers (AUROC >0.880) for the diagnosis of cirrhosis and complications. Clinical markers were significantly correlated with the gut microbiota and metabolites.
Conclusions
Cirrhosis-dependent gut microbiota and metabolites present unique signatures that can be used as noninvasive biomarkers for the diagnosis of cirrhosis and its complications.

Result Analysis
Print
Save
E-mail