1.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
2.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
3.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
4.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
5.Comparison of Finasteride and Dutasteride on Risk of Prostate Cancer in Patients with Benign Prostatic Hyperplasia: A Pooled Analysis of 15Real-world Databases
Dae Yul YANG ; Won-Woo SEO ; Rae Woong PARK ; Sang Youl RHEE ; Jae Myung CHA ; Yoon Soo HAH ; Chang Won JEONG ; Kyung-Jin KIM ; Hyeon-Jong YANG ; Do Kyung KIM ; Ji Yong HA
The World Journal of Men's Health 2025;43(1):188-196
Purpose:
Finasteride and dutasteride are used to treat benign prostatic hyperplasia (BPH) and reduce the risk of developing prostate cancer. Finasteride blocks only the type 2 form of 5-alpha-reductase, whereas dutasteride blocks both type 1 and 2 forms of the enzyme. Previous studies suggest the possibility that dutasteride may be superior to finasteride in preventing prostate cancer. We directly compared the effects of finasteride and dutasteride on the risk of prostate cancer in patients with BPH using a pooled analysis of 15 real-world databases.
Materials and Methods:
We conducted a multicenter, cohort study of new-users of finasteride and dutasteride. We include patients who were prescribed 5 mg finasteride or dutasteride for the first time to treat BPH and had at least 180 days of prescription. We excluded patients with a history of prostate cancer or a prostate-specific antigen level ≥ 4 ng/mL before the study drug prescription. Cox regression analysis was performed to examine the hazard ratio (HR) for prostate cancer after propensity score (PS) matching.
Results:
A total of 8,284 patients of new-users of finasteride and 8,670 patients of new-users of dutasteride were included across the 15 databases. In the overall population, compared to dutasteride, finasteride was associated with a lower risk of prostate cancer in both on-treatment and intent-to-treat time-at-risk periods. After 1:1 PS matching, 4,897 patients using finasteride and 4,897 patients using dutasteride were enrolled in the present study. No significant differences were observed for risk of prostate cancer between finasteride and dutasteride both on-treatment (HR=0.66, 95% confidence interval [CI]: 0.44–1.00; p=0.051) and intent-to-treat time-at-risk periods (HR=0.87, 95% CI: 0.67–1.14; p=0.310).
Conclusions
Using real-world databases, the present study demonstrated that dutasteride was not associated with a lower risk of prostate cancer than finasteride in patients with BPH.
6.Sorafenib vs. Lenvatinib in advanced hepatocellular carcinoma after atezolizumab/bevacizumab failure: A real-world study
Young Eun CHON ; Dong Yun KIM ; Mina KIM ; Beom Kyung KIM ; Seung Up KIM ; Jun Yong PARK ; Sang Hoon AHN ; Yeonjung HA ; Joo Ho LEE ; Kwan Sik LEE ; Beodeul KANG ; Jung Sun KIM ; Hong Jae CHON ; Do Young KIM
Clinical and Molecular Hepatology 2024;30(3):345-359
Background/Aims:
Atezolizumab plus bevacizumab (ATE+BEV) therapy has become the recommended first-line therapy for patients with unresectable hepatocellular carcinoma (HCC) because of favorable treatment responses. However, there is a lack of data on sequential regimens after ATE+BEV treatment failure. We aimed to investigate the clinical outcomes of patients with advanced HCC who received subsequent systemic therapy for disease progression after ATE+BEV.
Methods:
This multicenter, retrospective study included patients who started second-line systemic treatment with sorafenib or lenvatinib after HCC progressed on ATE+BEV between August 2019 and December 2022. Treatment response was assessed using the Response Evaluation Criteria in Solid Tumors (version 1.1.). Clinical features of the two groups were balanced through propensity score (PS) matching.
Results:
This study enrolled 126 patients, 40 (31.7%) in the lenvatinib group, and 86 (68.3%) in the sorafenib group. The median age was 63 years, and males were predominant (88.1%). In PS-matched cohorts (36 patients in each group), the objective response rate was similar between the lenvatinib- and sorafenib-treated groups (5.6% vs. 8.3%; P=0.643), but the disease control rate was superior in the lenvatinib group (66.7% vs. 22.2%; P<0.001). Despite the superior progression- free survival (PFS) in the lenvatinib group (3.5 vs. 1.8 months, P=0.001), the overall survival (OS, 10.3 vs. 7.5 months, P=0.353) did not differ between the two PS-matched treatment groups.
Conclusions
In second-line therapy for unresectable HCC after ATE+BEV failure, lenvatinib showed better PFS and comparable OS to sorafenib in a real-world setting. Future studies with larger sample sizes and longer follow-ups are needed to optimize second-line treatment.
7.Transradial Versus Transfemoral Access for Bifurcation Percutaneous Coronary Intervention Using SecondGeneration Drug-Eluting Stent
Jung-Hee LEE ; Young Jin YOUN ; Ho Sung JEON ; Jun-Won LEE ; Sung Gyun AHN ; Junghan YOON ; Hyeon-Cheol GWON ; Young Bin SONG ; Ki Hong CHOI ; Hyo-Soo KIM ; Woo Jung CHUN ; Seung-Ho HUR ; Chang-Wook NAM ; Yun-Kyeong CHO ; Seung Hwan HAN ; Seung-Woon RHA ; In-Ho CHAE ; Jin-Ok JEONG ; Jung Ho HEO ; Do-Sun LIM ; Jong-Seon PARK ; Myeong-Ki HONG ; Joon-Hyung DOH ; Kwang Soo CHA ; Doo-Il KIM ; Sang Yeub LEE ; Kiyuk CHANG ; Byung-Hee HWANG ; So-Yeon CHOI ; Myung Ho JEONG ; Hyun-Jong LEE
Journal of Korean Medical Science 2024;39(10):e111-
Background:
The benefits of transradial access (TRA) over transfemoral access (TFA) for bifurcation percutaneous coronary intervention (PCI) are uncertain because of the limited availability of device selection. This study aimed to compare the procedural differences and the in-hospital and long-term outcomes of TRA and TFA for bifurcation PCI using secondgeneration drug-eluting stents (DESs).
Methods:
Based on data from the Coronary Bifurcation Stenting Registry III, a retrospective registry of 2,648 patients undergoing bifurcation PCI with second-generation DES from 21 centers in South Korea, patients were categorized into the TRA group (n = 1,507) or the TFA group (n = 1,141). After propensity score matching (PSM), procedural differences, in-hospital outcomes, and device-oriented composite outcomes (DOCOs; a composite of cardiac death, target vessel-related myocardial infarction, and target lesion revascularization) were compared between the two groups (772 matched patients each group).
Results:
Despite well-balanced baseline clinical and lesion characteristics after PSM, the use of the two-stent strategy (14.2% vs. 23.7%, P = 0.001) and the incidence of in-hospital adverse outcomes, primarily driven by access site complications (2.2% vs. 4.4%, P = 0.015), were significantly lower in the TRA group than in the TFA group. At the 5-year follow-up, the incidence of DOCOs was similar between the groups (6.3% vs. 7.1%, P = 0.639).
Conclusion
The findings suggested that TRA may be safer than TFA for bifurcation PCI using second-generation DESs. Despite differences in treatment strategy, TRA was associated with similar long-term clinical outcomes as those of TFA. Therefore, TRA might be the preferred access for bifurcation PCI using second-generation DES.
8.Contemporary Statistics of Acute Ischemic Stroke and Transient Ischemic Attack in 2021: Insights From the CRCS-K-NIH Registry
Do Yeon KIM ; Tai Hwan PARK ; Yong-Jin CHO ; Jong-Moo PARK ; Kyungbok LEE ; Minwoo LEE ; Juneyoung LEE ; Sang Yoon BAE ; Da Young HONG ; Hannah JUNG ; Eunvin KO ; Hyung Seok GUK ; Beom Joon KIM ; Jun Yup KIM ; Jihoon KANG ; Moon-Ku HAN ; Sang-Soon PARK ; Keun-Sik HONG ; Hong-Kyun PARK ; Jeong-Yoon LEE ; Byung-Chul LEE ; Kyung-Ho YU ; Mi Sun OH ; Dong-Eog KIM ; Dong-Seok GWAK ; Soo Joo LEE ; Jae Guk KIM ; Jun LEE ; Doo Hyuk KWON ; Jae-Kwan CHA ; Dae-Hyun KIM ; Joon-Tae KIM ; Kang-Ho CHOI ; Hyunsoo KIM ; Jay Chol CHOI ; Joong-Goo KIM ; Chul-Hoo KANG ; Sung-il SOHN ; Jeong-Ho HONG ; Hyungjong PARK ; Sang-Hwa LEE ; Chulho KIM ; Dong-Ick SHIN ; Kyu Sun YUM ; Kyusik KANG ; Kwang-Yeol PARK ; Hae-Bong JEONG ; Chan-Young PARK ; Keon-Joo LEE ; Jee Hyun KWON ; Wook-Joo KIM ; Ji Sung LEE ; Hee-Joon BAE ;
Journal of Korean Medical Science 2024;39(34):e278-
This report presents the latest statistics on the stroke population in South Korea, sourced from the Clinical Research Collaborations for Stroke in Korea-National Institute for Health (CRCS-K-NIH), a comprehensive, nationwide, multicenter stroke registry. The Korean cohort, unlike western populations, shows a male-to-female ratio of 1.5, attributed to lower risk factors in Korean women. The average ages for men and women are 67 and 73 years, respectively.Hypertension is the most common risk factor (67%), consistent with global trends, but there is a higher prevalence of diabetes (35%) and smoking (21%). The prevalence of atrial fibrillation (19%) is lower than in western populations, suggesting effective prevention strategies in the general population. A high incidence of large artery atherosclerosis (38%) is observed, likely due to prevalent intracranial arterial disease in East Asians and advanced imaging techniques.There has been a decrease in intravenous thrombolysis rates, from 12% in 2017–2019 to 10% in 2021, with no improvements in door-to-needle and door-to-puncture times, worsened by the coronavirus disease 2019 pandemic. While the use of aspirin plus clopidogrel for noncardioembolic stroke and direct oral anticoagulants for atrial fibrillation is well-established, the application of direct oral anticoagulants for non-atrial fibrillation cardioembolic strokes in the acute phase requires further research. The incidence of early neurological deterioration (13%) and the cumulative incidence of recurrent stroke at 3 months (3%) align with global figures. Favorable outcomes at 3 months (63%) are comparable internationally, yet the lack of improvement in dependency at 3 months highlights the need for advancements in acute stroke care.
9.Kidney Health Plan 2033 in Korea: bridging the gap between the present and the future
Do Hyoung KIM ; Young Youl HYUN ; Jin Joo CHA ; Sua LEE ; Hyun Kyung LEE ; Jong Wook CHOI ; Su-Hyun KIM ; Sang Youb HAN ; Cheol Whee PARK ; Eun Young LEE ; Dae Ryong CHA ; Sung Gyun KIM ; Chun Soo LIM ; Sun-Hee PARK
Kidney Research and Clinical Practice 2024;43(1):8-19
In response to the increase in the prevalence of chronic kidney disease (CKD) in Korea, the growth of patients requiring renal replacement therapy and the subsequent increase in medical costs, the rapid expansion of patients with end-stage kidney disease (ESKD), and the decrease in patients receiving home therapy, including peritoneal dialysis, the Korean Society of Nephrology has proclaimed the new policy, Kidney Health Plan 2033 (KHP 2033). KHP 2033 would serve as a milestone to bridge the current issues to a future solution by directing the prevention and progression of CKD and ESKD, particularly diabetic kidney disease, and increasing the proportion of home therapy, thereby reducing the socioeconomic burden of kidney disease and improving the quality of life. Here, we provide the background for the necessity of KHP 2033, as well as the contents of KHP 2033, and enlighten the Korean Society of Nephrology’s future goals. Together with patients, healthcare providers, academic societies, and national policymakers, we need to move forward with goal-oriented drive and leadership to achieve these goals.
10.Interactions between Sleep Apnea and Coronary Artery Disease on the Incidence of Sudden Cardiac Arrest: A Multi-Center Case-Control Study
Eujene JUNG ; Hyun Ho RYU ; Young Sun RO ; Kyoung Chul CHA ; Sang Do SHIN ; Sung Oh HWANG
Yonsei Medical Journal 2023;64(1):48-53
Purpose:
Sleep apnea (SA) is a risk factor for coronary artery disease (CAD), and SA and CAD increase the incidence of sudden cardiac arrest (SCA). This study aimed to investigate the effect of SA on the incidence of SCA and explore the effect of varying degrees of SA with or without CAD on the incidence of SCA.
Materials and Methods:
This prospective multi-center, case-control study was performed using the phase II Cardiac Arrest Pursuit Trial with Unique Registry and Epidemiologic Surveillance (CAPTURES-II) database for SCA cases and community-based controls in Korea. The matching ratio of cases to controls was 1:1, and they were randomly matched within demographics, including age, sex, and residence. The primary variable was a history of SA, and the second variable was a history of CAD. We conducted a conditional logistic regression analysis to estimate the effect of SA and CAD on the SCA risk, and an interaction analysis between SA and CAD.
Results:
SA was associated with an increased risk of SCA [adjusted odds ratio (AOR) (95% confidence interval, CI): 1.54 (1.16–2.03)], and CAD was associated with an increased risk of SCA [AOR (95% CI): 3.94 (2.50–6.18)]. SA was a risk factor for SCA in patients without CAD [AOR (95% CI): 1.62 (1.21–2.17)], but not in patients with CAD [AOR (95% CI): 0.56 (0.20–1.53)].
Conclusion
In the general population, SA is risk factor for SCA only in patients without CAD. Early medical intervention for SA, especially in populations without pre-existing CAD, may reduce the SCA risk.ClinicalTrials.gov (NCT03700203)

Result Analysis
Print
Save
E-mail