1.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
2.Constitutional Chromosome 21 Abnormality in B-ALL with iAMP21 in a Patient Developing Treatment-Related Myelodysplastic Syndrome
Inhwa KIM ; Su Hyun YOON ; Sunghan KANG ; Kyung-Nam KOH ; Mi Young KIM ; Young-Uk CHO ; Sang-Hyun HWANG ; Seongsoo JANG ; Eul-Ju SEO ; Beom Hee LEE ; Sunghee MIN ; Hyunwoo BAE ; Ho Joon IM ; Hyery KIM
Clinical Pediatric Hematology-Oncology 2025;32(1):23-28
The initial molecular cytogenetic characteristics of blasts plays a significant role in determining the treatment course of B-cell acute lymphoblastic leukemia (B-ALL).B-ALL with intrachromosomal amplification of chromosome 21 (iAMP21) has been well known to have unfavorable prognosis. Also, there are previously recognized germline mutations that increase the risk of ALL, such as trisomy 21, Down syndrome. This case report is about a 16-year-old girl who presented with lymphadenitis, purpura, and fever followed by initial lab of elevated white blood cell with blasts.She had some notable facial features, but no typical Down syndrome related one.Bone marrow biopsy and fluorescence in situ hybridization finalized the diagnosis as B-ALL with iAMP21, high-risk group. The minimal residual disease-negative complete remission was achieved after the induction chemotherapy with Korean multicenter high-risk protocol. However, abnormal karyotype was sustained in bone marrow. Microarrays with her buccal swab raised the possibility that the abnormal karyotype was not from the leukemic blasts but rather from the germline. Although she underwent scheduled chemotherapy uneventfully as slow early responder type, thrombocytopenia and abnormal karyotype persisted, leading to the diagnosis of acute myeloid leukemia. Additional chemotherapy and peripheral blood stem cell transplantation was performed which resulted in engraftment. This case highlights the discovery of a constitutional genetic aberration, which played like a silent yet critical background factor for B-ALL with iAMP21. As the number of reported cases are limited, the role of germline chromosome 21 mutation as the indicator for prognosis of B-ALL should be studied further.
3.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
4.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
5.Constitutional Chromosome 21 Abnormality in B-ALL with iAMP21 in a Patient Developing Treatment-Related Myelodysplastic Syndrome
Inhwa KIM ; Su Hyun YOON ; Sunghan KANG ; Kyung-Nam KOH ; Mi Young KIM ; Young-Uk CHO ; Sang-Hyun HWANG ; Seongsoo JANG ; Eul-Ju SEO ; Beom Hee LEE ; Sunghee MIN ; Hyunwoo BAE ; Ho Joon IM ; Hyery KIM
Clinical Pediatric Hematology-Oncology 2025;32(1):23-28
The initial molecular cytogenetic characteristics of blasts plays a significant role in determining the treatment course of B-cell acute lymphoblastic leukemia (B-ALL).B-ALL with intrachromosomal amplification of chromosome 21 (iAMP21) has been well known to have unfavorable prognosis. Also, there are previously recognized germline mutations that increase the risk of ALL, such as trisomy 21, Down syndrome. This case report is about a 16-year-old girl who presented with lymphadenitis, purpura, and fever followed by initial lab of elevated white blood cell with blasts.She had some notable facial features, but no typical Down syndrome related one.Bone marrow biopsy and fluorescence in situ hybridization finalized the diagnosis as B-ALL with iAMP21, high-risk group. The minimal residual disease-negative complete remission was achieved after the induction chemotherapy with Korean multicenter high-risk protocol. However, abnormal karyotype was sustained in bone marrow. Microarrays with her buccal swab raised the possibility that the abnormal karyotype was not from the leukemic blasts but rather from the germline. Although she underwent scheduled chemotherapy uneventfully as slow early responder type, thrombocytopenia and abnormal karyotype persisted, leading to the diagnosis of acute myeloid leukemia. Additional chemotherapy and peripheral blood stem cell transplantation was performed which resulted in engraftment. This case highlights the discovery of a constitutional genetic aberration, which played like a silent yet critical background factor for B-ALL with iAMP21. As the number of reported cases are limited, the role of germline chromosome 21 mutation as the indicator for prognosis of B-ALL should be studied further.
6.Constitutional Chromosome 21 Abnormality in B-ALL with iAMP21 in a Patient Developing Treatment-Related Myelodysplastic Syndrome
Inhwa KIM ; Su Hyun YOON ; Sunghan KANG ; Kyung-Nam KOH ; Mi Young KIM ; Young-Uk CHO ; Sang-Hyun HWANG ; Seongsoo JANG ; Eul-Ju SEO ; Beom Hee LEE ; Sunghee MIN ; Hyunwoo BAE ; Ho Joon IM ; Hyery KIM
Clinical Pediatric Hematology-Oncology 2025;32(1):23-28
The initial molecular cytogenetic characteristics of blasts plays a significant role in determining the treatment course of B-cell acute lymphoblastic leukemia (B-ALL).B-ALL with intrachromosomal amplification of chromosome 21 (iAMP21) has been well known to have unfavorable prognosis. Also, there are previously recognized germline mutations that increase the risk of ALL, such as trisomy 21, Down syndrome. This case report is about a 16-year-old girl who presented with lymphadenitis, purpura, and fever followed by initial lab of elevated white blood cell with blasts.She had some notable facial features, but no typical Down syndrome related one.Bone marrow biopsy and fluorescence in situ hybridization finalized the diagnosis as B-ALL with iAMP21, high-risk group. The minimal residual disease-negative complete remission was achieved after the induction chemotherapy with Korean multicenter high-risk protocol. However, abnormal karyotype was sustained in bone marrow. Microarrays with her buccal swab raised the possibility that the abnormal karyotype was not from the leukemic blasts but rather from the germline. Although she underwent scheduled chemotherapy uneventfully as slow early responder type, thrombocytopenia and abnormal karyotype persisted, leading to the diagnosis of acute myeloid leukemia. Additional chemotherapy and peripheral blood stem cell transplantation was performed which resulted in engraftment. This case highlights the discovery of a constitutional genetic aberration, which played like a silent yet critical background factor for B-ALL with iAMP21. As the number of reported cases are limited, the role of germline chromosome 21 mutation as the indicator for prognosis of B-ALL should be studied further.
7.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
8.Constitutional Chromosome 21 Abnormality in B-ALL with iAMP21 in a Patient Developing Treatment-Related Myelodysplastic Syndrome
Inhwa KIM ; Su Hyun YOON ; Sunghan KANG ; Kyung-Nam KOH ; Mi Young KIM ; Young-Uk CHO ; Sang-Hyun HWANG ; Seongsoo JANG ; Eul-Ju SEO ; Beom Hee LEE ; Sunghee MIN ; Hyunwoo BAE ; Ho Joon IM ; Hyery KIM
Clinical Pediatric Hematology-Oncology 2025;32(1):23-28
The initial molecular cytogenetic characteristics of blasts plays a significant role in determining the treatment course of B-cell acute lymphoblastic leukemia (B-ALL).B-ALL with intrachromosomal amplification of chromosome 21 (iAMP21) has been well known to have unfavorable prognosis. Also, there are previously recognized germline mutations that increase the risk of ALL, such as trisomy 21, Down syndrome. This case report is about a 16-year-old girl who presented with lymphadenitis, purpura, and fever followed by initial lab of elevated white blood cell with blasts.She had some notable facial features, but no typical Down syndrome related one.Bone marrow biopsy and fluorescence in situ hybridization finalized the diagnosis as B-ALL with iAMP21, high-risk group. The minimal residual disease-negative complete remission was achieved after the induction chemotherapy with Korean multicenter high-risk protocol. However, abnormal karyotype was sustained in bone marrow. Microarrays with her buccal swab raised the possibility that the abnormal karyotype was not from the leukemic blasts but rather from the germline. Although she underwent scheduled chemotherapy uneventfully as slow early responder type, thrombocytopenia and abnormal karyotype persisted, leading to the diagnosis of acute myeloid leukemia. Additional chemotherapy and peripheral blood stem cell transplantation was performed which resulted in engraftment. This case highlights the discovery of a constitutional genetic aberration, which played like a silent yet critical background factor for B-ALL with iAMP21. As the number of reported cases are limited, the role of germline chromosome 21 mutation as the indicator for prognosis of B-ALL should be studied further.
9.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
10.Effect of COVID-19 on the treatment process of ischemic stroke patients in emergency department according to having COVID-19-related symptoms or not: a retrospective multicenter cohort study
Seyong PARK ; Joonbum PARK ; Youngjoo LEE ; Hye Young JANG ; Young Shin CHO ; Heajin CHUNG ; Sang Il KIM ; Beom Sok SEO ; Young Wha SOHN ; Sung Oh LEE
Journal of the Korean Society of Emergency Medicine 2024;35(6):384-393
Objective:
This was a retrospective investigation conducted to evaluate the impact of the coronavirus disease-2019 (COVID-19) pandemic on the treatment and outcomes of patients with ischemic stroke.
Methods:
Data were collected over one year for the COVID-19 and pre-COVID-19 (control) groups, from May 1, 2020, to April 30, 2021, when COVID-19 was prevalent in Korea, and from May 1, 2018 to April 30, 2019, before the COVID-19 outbreak, respectively. Adult patients diagnosed with acute cerebral infarction at three emergency medical centers during the study period were included. COVID-19-positive patients (i.e., those with COVID-19 symptoms but those who tested positive) were excluded from this study to ensure only the evaluation of delays in stroke treatment due to the pandemic.
Results:
During the COVID-19 pandemic, of the total of 82,558 patients who visited the emergency centers, 710 were diagnosed with ischemic stroke. The study observed that the pandemic caused process delays for these patients, resulting in longer wait times for brain CT scans (P=0.010, P<0.001) and emergency room stays (P=0.0055, P<0.001) during the COVID-19 period. However, the length of time for administration of tissue plasminogen activator remained relatively constant. Notably, the 28-day mortality rate was considerably higher for patients with COVID-19-related symptoms during the pandemic (13.6% vs 3.1%; P=0.006). A cumulative risk analysis revealed an increased mortality risk for patients with COVID-19 related symptoms (P=0.005).
Conclusion
This study showed the need to improve emergency care procedures during pandemics to ensure prompt treatment of ischemic stroke. Preparation and resource allocation for ischemic stroke patients with COVID-19 symptoms are crucial.

Result Analysis
Print
Save
E-mail