1.Ca2+ Release From The Endoplasmic Reticulum Mediates Electric Field Guided Cell Migration of Dictyostelium discoideum
Yi-Fan WANG ; Shu-Qin YUAN ; Run-Chi GAO ; San-Jun ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1252-1263
ObjectiveAs a second messenger in intracellular signal transduction, Ca2+ plays an important role in cell migration. Previous studies have demonstrated that extracellular Ca2+ influx can promote electric field-guided cell migration, known as electrotaxis. However, the effect of intracellular Ca2+ flow on electrotaxis is unclear. Therefore, in this study, we investigate the effect of Ca2+ flux on the electrotaxis of Dictyostelium discoideum. MethodsThe electrotaxis of Dictyostelium discoideum was investigated by applying a direct current (DC) electric field. Cell migration was recorded using a real-time imaging system. Calcium channel inhibitors, the extracellular Ca2+ chelator EGTA, Ca2+-free DB buffer, and caffeine were applied to investigate the impact of intra- and extracellular Ca2+ flow on electrotaxis. The involvement of G proteins and ERK2 in directed cell migration mediated by endoplasmic reticulum Ca2+ release was explored using mutants. ResultsDictyostelium discoideum migrated toward the cathode in the electric field in a voltage-dependent manner. The intracellular Ca2+ concentration of the cells was significantly increased in the electric field. Inhibition of both extracellular Ca2+ influx and intracellular Ca2+ release suppressed cell electrotaxis migration. Inhibition of endoplasmic reticulum Ca2+ release induced by caffeine significantly impaired the electrotaxis of Dictyostelium discoideum. Deletion of Gα2, Gβ, Gγ, and Erk2 notably reduced the electrotaxis of the cells. Enhancing Ca2+ release mediated by caffeine restored the electrotaxis of the Gα2-, Gβ -, and Erk2- mutant cells partially or completely, but did not restore electrotaxis in the Gγ- mutant cells. ConclusionCa2+ release from the endoplasmic reticulum regulates electrotaxis migration in Dictyostelium discoideum and is involved in the regulation of cell electrotaxis by G proteins and ERK2.
2.PIEZO1 Channel is Involved in Electric Field Guided Cell Migration
Gui-Cheng ZHANG ; Peng GONG ; Yi-Fan WANG ; San-Jun ZHAO
Progress in Biochemistry and Biophysics 2024;51(3):673-684
ObjectiveDisruption of epithelial layer may instantaneously induce the generation of endogenous electric fields, which was proved to play an important role in guiding the cell migration and promoting wound healing. PIEZO1 is a kind of mechanic sensitive channel, may be regulated by voltage, is proved to involve in chemotactic migration of cells and play an important role in the process of wound healing. In this paper, the role of PIEZO1 and its downstream proteins FAK and integrin β1 in the electric field guided cell migration were investigated by HaCaT cells (human immortalized keratinocyte). MethodsCell migration was tracked by Living Cell Imaging System in directed current (DC) electric field (EF). Inhibitors and RNAi techniques were applied to study the function of PIEZO1 and other related proteins in electric fields. Western blot was used to detect the expression and phosphorylation levels of integrin β1 and FAK in electric field guided migration under EF stimulation. ResultsPiezo1 RNAi as well as Ruthenium red and GsMTx4 treatment all significantly inhibited the electrotaxis of HaCaT cells. Electric field stimulation with GsMTx4 treatment alone increased FAK phosphorylation level and the expression of integrin β1. Electric field promoted the expression level of integrin β1 and the phosphorylation level of FAK. Inhibiting the expression of PIEZO1 by RNAi significantly attenuated the phosphorylation level of FAK under EF stimulation. Inhibition of integrin β1 and FAK by inhibitor significantly decrease the electric field guided cell migration. ConclusionPIEZO1 as well as integrin β1 and FAK are involved in the electric field guided cell migration of HaCaT cells. Electric field signals regulate the expression of integrin β1 and the activation of FAK through PIEZO1-mediated signal pathway to orchestrate cell migration.
3.A hnRNPA2B1 agonist effectively inhibits HBV and SARS-CoV-2 omicron in vivo.
Daming ZUO ; Yu CHEN ; Jian-Piao CAI ; Hao-Yang YUAN ; Jun-Qi WU ; Yue YIN ; Jing-Wen XIE ; Jing-Min LIN ; Jia LUO ; Yang FENG ; Long-Jiao GE ; Jia ZHOU ; Ronald J QUINN ; San-Jun ZHAO ; Xing TONG ; Dong-Yan JIN ; Shuofeng YUAN ; Shao-Xing DAI ; Min XU
Protein & Cell 2023;14(1):37-50
The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.
Animals
;
Mice
;
Antiviral Agents/pharmacology*
;
COVID-19
;
Hepatitis B virus
;
Interferon Type I/metabolism*
;
SARS-CoV-2/drug effects*
;
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors*
4.Combination immunotherapy of glioblastoma with dendritic cell cancer vaccines,anti-PD-1 and poly I:C
Ping ZHU ; Shi-You LI ; Jin DING ; Zhou FEI ; Sheng-Nan SUN ; Zhao-Hui ZHENG ; Ding WEI ; Jun JIANG ; Jin-Lin MIAO ; San-Zhong LI ; Xing LUO ; Kui ZHANG ; Bin WANG ; Kun ZHANG ; Su PU ; Qian-Ting WANG ; Xin-Yue ZHANG ; Gao-Liu WEN ; Jun O.LIU ; Thomas-John AUGUST ; Huijie BIAN ; Zhi-Nan CHEN ; You-Wen HE
Journal of Pharmaceutical Analysis 2023;13(6):616-624
Glioblastoma(GBM)is a lethal cancer with limited therapeutic options.Dendritic cell(DC)-based cancer vaccines provide a promising approach for GBM treatment.Clinical studies suggest that other immu-notherapeutic agents may be combined with DC vaccines to further enhance antitumor activity.Here,we report a GBM case with combination immunotherapy consisting of DC vaccines,anti-programmed death-1(anti-PD-1)and poly I:C as well as the chemotherapeutic agent cyclophosphamide that was integrated with standard chemoradiation therapy,and the patient remained disease-free for 69 months.The patient received DC vaccines loaded with multiple forms of tumor antigens,including mRNA-tumor associated antigens(TAA),mRNA-neoantigens,and hypochlorous acid(HOCl)-oxidized tumor lysates.Furthermore,mRNA-TAAAs were modified with a novel TriVac technology that fuses TAAs with a destabilization domain and inserts TAAs into full-length lysosomal associated membrane protein-1 to enhance major histo-compatibility complex(MHC)class Ⅰ and Ⅱ antigen presentation.The treatment consisted of 42 DC cancer vaccine infusions,26 anti-PD-1 antibody nivolumab administrations and 126 poly I:C injections for DC infusions.The patient also received 28 doses of cyclophosphamide for depletion of regulatory T cells.No immunotherapy-related adverse events were observed during the treatment.Robust antitumor CD4+and CD8+T-cell responses were detected.The patient remains free of disease progression.This is the first case report on the combination of the above three agents to treat glioblastoma patients.Our results suggest that integrated combination immunotherapy is safe and feasible for long-term treatment in this patient.A large-scale trial to validate these findings is warranted.
5.Clinical effect of different maintenance doses of caffeine citrate in the treatment of preterm infants requiring assisted ventilation: a pilot multicenter study.
Yang YANG ; Ke-Yu LU ; Rui CHENG ; Qin ZHOU ; Guang-Dong FANG ; Hong LI ; Jie SHAO ; Huai-Yan WANG ; Zheng-Ying LI ; Song-Lin LIU ; Zhen-Guang LI ; Jin-Lan CAI ; Mei XUE ; Xiao-Qing CHEN ; Zhao-Jun PAN ; Yan GAO ; Li HUANG ; Hai-Ying LI ; Lei SONG ; San-Nan WANG ; Gui-Hua SHU ; Wei WU ; Meng-Zhu YU ; Zhun XU ; Hong-Xin LI ; Yan XU ; Zhi-Dan BAO ; Xin-Ping WU ; Li YE ; Xue-Ping DONG ; Qi-Gai YIN ; Xiao-Ping YIN ; Jin-Jun ZHOU
Chinese Journal of Contemporary Pediatrics 2022;24(3):240-248
OBJECTIVES:
To explore the optimal maintenance dose of caffeine citrate for preterm infants requiring assisted ventilation and caffeine citrate treatment.
METHODS:
A retrospective analysis was performed on the medical data of 566 preterm infants (gestational age ≤34 weeks) who were treated and required assisted ventilation and caffeine citrate treatment in the neonatal intensive care unit of 30 tertiary hospitals in Jiangsu Province of China between January 1 and December 31, 2019. The 405 preterm infants receiving high-dose (10 mg/kg per day) caffeine citrate after a loading dose of 20 mg/kg within 24 hours after birth were enrolled as the high-dose group. The 161 preterm infants receiving low-dose (5 mg/kg per day) caffeine citrate were enrolled as the low-dose group.
RESULTS:
Compared with the low-dose group, the high-dose group had significant reductions in the need for high-concentration oxygen during assisted ventilation (P=0.044), the duration of oxygen inhalation after weaning from noninvasive ventilation (P<0.01), total oxygen inhalation time during hospitalization (P<0.01), the proportion of preterm infants requiring noninvasive ventilation again (P<0.01), the rate of use of pulmonary surfactant and budesonide (P<0.05), and the incidence rates of apnea and bronchopulmonary dysplasia (P<0.01), but the high-dose group had a significantly increased incidence rate of feeding intolerance (P=0.032). There were no significant differences between the two groups in the body weight change, the incidence rates of retinopathy of prematurity, intraventricular hemorrhage or necrotizing enterocolitis, the mortality rate, and the duration of caffeine use (P>0.05).
CONCLUSIONS
This pilot multicenter study shows that the high maintenance dose (10 mg/kg per day) is generally beneficial to preterm infants in China and does not increase the incidence rate of common adverse reactions. For the risk of feeding intolerance, further research is needed to eliminate the interference of confounding factors as far as possible.
Caffeine/therapeutic use*
;
Citrates
;
Humans
;
Infant
;
Infant, Newborn
;
Infant, Premature
;
Respiration, Artificial
;
Retrospective Studies
6.The role of tyrosine phosphatase Shp2 in spermatogonial differentiation and spermatocyte meiosis.
Yang LI ; Wen-Sheng LIU ; Jia YI ; Shuang-Bo KONG ; Jian-Cheng DING ; Yi-Nan ZHAO ; Ying-Pu TIAN ; Gen-Sheng FENG ; Chao-Jun LI ; Wen LIU ; Hai-Bin WANG ; Zhong-Xian LU
Asian Journal of Andrology 2020;22(1):79-87
The transition from spermatogonia to spermatocytes and the initiation of meiosis are key steps in spermatogenesis and are precisely regulated by a plethora of proteins. However, the underlying molecular mechanism remains largely unknown. Here, we report that Src homology domain tyrosine phosphatase 2 (Shp2; encoded by the protein tyrosine phosphatase, nonreceptor type 11 [Ptpn11] gene) is abundant in spermatogonia but markedly decreases in meiotic spermatocytes. Conditional knockout of Shp2 in spermatogonia in mice using stimulated by retinoic acid gene 8 (Stra8)-cre enhanced spermatogonial differentiation and disturbed the meiotic process. Depletion of Shp2 in spermatogonia caused many meiotic spermatocytes to die; moreover, the surviving spermatocytes reached the leptotene stage early at postnatal day 9 (PN9) and the pachytene stage at PN11-13. In preleptotene spermatocytes, Shp2 deletion disrupted the expression of meiotic genes, such as disrupted meiotic cDNA 1 (Dmc1), DNA repair recombinase rad51 (Rad51), and structural maintenance of chromosome 3 (Smc3), and these deficiencies interrupted spermatocyte meiosis. In GC-1 cells cultured in vitro, Shp2 knockdown suppressed the retinoic acid (RA)-induced phosphorylation of extracellular-regulated protein kinase (Erk) and protein kinase B (Akt/PKB) and the expression of target genes such as synaptonemal complex protein 3 (Sycp3) and Dmc1. Together, these data suggest that Shp2 plays a crucial role in spermatogenesis by governing the transition from spermatogonia to spermatocytes and by mediating meiotic progression through regulating gene transcription, thus providing a potential treatment target for male infertility.
Animals
;
Cell Cycle Proteins/genetics*
;
Cell Line
;
Cell Survival
;
Chondroitin Sulfate Proteoglycans/genetics*
;
Chromosomal Proteins, Non-Histone/genetics*
;
Gene Expression Regulation
;
Gene Knockdown Techniques
;
Infertility, Male
;
Male
;
Meiosis/genetics*
;
Mice
;
Mice, Knockout
;
Mice, Transgenic
;
Phosphate-Binding Proteins/genetics*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics*
;
Rad51 Recombinase/genetics*
;
Real-Time Polymerase Chain Reaction
;
Spermatocytes/metabolism*
;
Spermatogenesis/genetics*
;
Spermatogonia/metabolism*
7.Clinical characteristics and drug sensitivity in children with invasive pneumococcal disease: a multicenter study.
Cai-Yun WANG ; Ying-Hu CHEN ; Xue-Jun CHEN ; Hong-Mei XU ; Chun-Mei JING ; Ji-Kui DENG ; Rui-Zhen ZHAO ; Hui-Ling DENG ; San-Cheng CAO ; Hui YU ; Chuan-Qing WANG ; Ai-Min WANG ; Ai-Wei LIN ; Shi-Fu WANG ; Qing CAO ; Xing WANG ; Ting ZHANG ; Hong ZHANG ; Jian-Hua HAO ; Cong-Hui ZHANG
Chinese Journal of Contemporary Pediatrics 2019;21(7):644-649
OBJECTIVE:
To study the clinical characteristics, drug sensitivity of isolated strains, and risk factors of drug resistance in children with invasive pneumococcal disease (IPD).
METHODS:
The clinical characteristics and drug sensitivity of the isolated strains of 246 hospitalized children with IPD in nine grade A tertiary children's hospitals from January 2016 to June 2018 were analyzed.
RESULTS:
Of the 246 children with IPD, there were 122 males and 124 females. Their ages ranged from 1 day to 14 years, and among them, 68 (27.6%) patients were less than 1 year old, 54 (22.0%) patients were 1 to 2 years old, 97 (39.4%) patients were 2 to 5 years old, and 27 (11.0%) patients were 5 to 14 years old. Pneumonia with sepsis was the most common infection type (58.5%, 144/246), followed by bloodstream infection without focus (19.9%, 49/246) and meningitis (15.0%, 37/246). Forty-nine (19.9%) patients had underlying diseases, and 160 (65.0%) had various risk factors for drug resistance. The isolated Streptococcus pneumoniae strains were 100% sensitive to vancomycin, linezolid, moxifloxacin, and levofloxacin, 90% sensitive to ertapenem, ofloxacin, and ceftriaxone, but had a low sensitivity to erythromycin (4.2%), clindamycin (7.9%), and tetracycline (6.3%).
CONCLUSIONS
IPD is more common in children under 5 years old, especially in those under 2 years old. Some children with IPD have underlying diseases, and most of the patients have various risk factors for drug resistance. Pneumonia with sepsis is the most common infection type. The isolated Streptococcus pneumoniae strains are highly sensitive to vancomycin, linezolid, moxifloxacin, levofloxacin, ertapenem, and ceftriaxone in children with IPD.
Anti-Bacterial Agents
;
Ceftriaxone
;
Child
;
Child, Preschool
;
Drug Resistance
;
Female
;
Humans
;
Infant
;
Male
;
Microbial Sensitivity Tests
;
Pneumococcal Infections
;
Streptococcus pneumoniae
8.Magnetic resonance imaging of the zone of calcified cartilage in the knee joint using 3-dimensional ultrashort echo time cones sequences.
Jin LIU ; Yang WEI ; Ya-Jun MA ; Yan-Chun ZHU ; Quan ZHOU ; Ying-Hua ZHAO
Chinese Medical Journal 2019;132(5):562-568
BACKGROUND:
The zone of calcified cartilage (ZCC) plays an important role in the pathogenesis of osteoarthritis (OA) but has never been imaged in vivo with magnetic resonance (MR) imaging techniques. We investigated the feasibility of direct imaging of the ZCC in both cadaveric whole knee specimens and in vivo healthy knees using a 3-dimensional ultrashort echo time cones (3D UTE-Cones) sequence on a clinical 3T scanner.
METHODS:
In all, 12 cadaveric knee joints and 10 in vivo healthy were collected. At a 3T MR scanner with an 8-channel knee coil, a fat-saturated 3D dual-echo UTE-Cones sequence was used to image the ZCC, following with a short rectangular pulse excitation and 3D spiral sampling with conical view ordering. The regions of interests (ROIs) were delineated by a blinded observer. Single-component T2* and T2 values were calculated from fat-saturated 3D dual-echo UTE-Cones and a Carr-Purcell-Meiboom-Gill (T2 CPMG) data using a semi-automated MATLAB code.
RESULTS:
The single-exponential fitting curve of ZCC was accurately obtained with R2 of 0.989. For keen joint samples, the ZCC has a short T2* ranging from 0.62 to 2.55 ms, with the mean ± standard deviation (SD) of 1.49 ± 0.66 ms, and with 95% confidence intervals (CI) of 1.20-1.78 ms. For volunteers, the short T2* ranges from 0.93 to 3.52 ms, with the mean ± SD of 2.09 ± 0.56 ms, and the 95% CI is 1.43 to 2.74 ms in ZCC.
CONCLUSIONS
The high-resolution 3D UTE-Cones sequence might be used to directly image ZCC in the human knee joint on a clinical 3T scanner with a scan time of more than 10 min. Using this non-invasive technique, the T2* relaxation time of the ZCC can be further detected.
Adult
;
Aged
;
Aged, 80 and over
;
Female
;
Humans
;
Imaging, Three-Dimensional
;
methods
;
Knee Joint
;
pathology
;
Magnetic Resonance Imaging
;
methods
;
Male
;
Middle Aged
;
Osteoarthritis
;
diagnostic imaging
9.Detection of Repair of the Zone of Calcified Cartilage with Osteoarthritis through Mesenchymal Stem Cells by Ultrashort Echo Time Magnetic Resonance Imaging.
Quan ZHOU ; Shao-Lin LI ; Ya-Jun MA ; Vicki De TAL ; Wei LI ; Ying-Hua ZHAO
Chinese Medical Journal 2018;131(9):1092-1098
ObjectiveCurrently, magnetic resonance imaging (MRI) is the most commonly used imaging modality for observing the growth and development of mesenchymal stem cells (MSCs) after in vivo transplantation to treat osteoarthritis (OA). However, it is a challenge to accurately monitor the treatment effects of MSCs in the zone of calcified cartilage (ZCC) with OA. This is especially true in the physiological and biochemical views that are not accurately detected by MRI contrast agents. In contrast, ultrashort time echo (UTE) MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs. A special focus is given to the outlook of the use of UTE MRI to detect repair of the ZCC with OA through MSCs. The limitations of the current techniques for clinical applications and future directions are also discussed.
Data SourcesUsing the combined keywords: "osteoarthritis", "mesenchymal stem cells", "calcified cartilage", and "magnetic resonance imaging", the PubMed/MEDLINE literature search was conducted up to June 1, 2017.
Study SelectionA total of 132 published articles were initially identified citations. Of the 132 articles, 48 articles were selected after further detailed review. This study referred to all the important English literature in full.
ResultsIn contrast, UTE MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs.
ConclusionsThe current studies showed that the ZCC could be described in terms of its histomorphology and biochemistry by UTE MRI. We prospected that UTE MRI has been shown the potential for more effectively observing the repair of the ZCC in OA by MSCs in vivo.
Cartilage, Articular ; diagnostic imaging ; Humans ; Magnetic Resonance Imaging ; methods ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stem Cells ; physiology ; Osteoarthritis ; diagnostic imaging ; therapy
10.Pharmacokinetics and Tolerability of Oral Dosage Forms of Huperzine A in Healthy Chinese Male Volunteers: a Randomized,Single Dose, Three-period, Six-sequence Crossover Study
WU SAN-LAN ; GAN JUN ; RAO JING ; HE SI-JIE ; ZHU WEN-WEN ; ZHAO YING ; LV YONG-NING ; HUANG JIAN-GENG ; LIU YA-NI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2017;37(5):795-802
Huperzine A is a potent,reversible,and blood-brain barrier permeable acetylcholinesterase irhibitor.The aim of this study was to compare the pharmacokinetics,tolerability,and bioavailability of two formulations with the established reference formulation of huperzine A in a fasting,healthy Chinese male population.This was a randomized,single-dose,3-period,6-sequence crossover study.The plasma concentrations of huperzine A were determined by liquid chromatography tandem mass spectrometry.Tolerability was assessed based on subject interview,vital sign monitoring,physical examination,and routine blood and urine tests.The mean (SD) pharmacokinetic parameters of the reference drug were Cmax,1.550 (0.528) ng/mL;t1/2,12.092 (1.898) h;AUC0-72h,17.550 (3.794) ng.h/mL.Those of the test formulation A and test formulation B were Cmax,1.412 (0.467),1.521 (0.608) ng/mL;t1/2,12.073 (2.068),12.271 (1.678) h;AUC0-72h,15.286 (3.434) ng.h/mL,15.673 (3.586) ng.h/mL.The 90% confidence intervals for the AUC0-72h and Cmax were between 0.80 and 1.25.No adverse events were reported by the subjects or found with results of clinical laboratory test.The test and reference products met the regulatory criteria for bioequivalence in these fasting,healthy Chinese male volunteers.All three formulations appeared to be well tolerated.

Result Analysis
Print
Save
E-mail