1.Construction of Saccharomyces cerevisiae cell factories for lycopene production.
Ming-Yu SHI ; Liu YI ; Dong WANG ; Fu-Ping LU ; Lu-Qi HUANG ; Zhu-Bo DAI ; Xue-Li ZHANG
China Journal of Chinese Materia Medica 2014;39(20):3978-3985
		                        		
		                        			
		                        			For microbial production of lycopene, the lycopene synthetic genes from Pantoea agglomerans were integrated into Saccharomyces cerevisiae strain BY4742, to obtain strain ZD-L-000 for production of 0.17 mg · L(-1) lycopene. Improving supplies of isoprenoid precursors was then investigated for increasing lycopene production. Four key genes were chosen to be overexpressed, inclu- ding truncated 3-hydroxy-3-methylglutaryl-CoA reductase gene (tHMG1), which is the major rate-limiting enzyme in the mevalonate (MVA) pathway, a mutated global regulatory factor gene (upc2.1), a fusion gene of FPP synthase (ERG20) and endogenous GGPP synthase (BTS1), which is a key enzyme in the diterpenoid synthetic pathway, and GGPP synthase gene (SaGGPS) from Sulfolobus acidocaldarius. Over-expression of upc2.1 could not improve lycopene production, while over-expression of tHMGI , BTS1-ERG20 and SaGGPS genes led to 2-, 16. 9- and20. 5-fold increase of lycopene production, respectively. In addition, three effective genes, tHMG1, BTS1-ERG20 and SaGGPS, were integrated into rDNA sites of ZD-L-000, resulting in strain ZD-L-201 for production of 13.23 mg · L(-1) lycopene, which was 77-fold higher than that of the parent strain. Finally, two-phase extractive fermentation was performed. The titer of lycopene increased 10-fold to 135.21 mg · L(-1). The engineered yeast strains obtained in this work provided the basis for fermentative production of lycopene.
		                        		
		                        		
		                        		
		                        			Bacterial Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Biosynthetic Pathways
		                        			;
		                        		
		                        			Carotenoids
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Genes, Synthetic
		                        			;
		                        		
		                        			Genetic Engineering
		                        			;
		                        		
		                        			Pantoea
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Saccharomyces cerevisiae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
2.Construction and preliminary applications of a Saccharomyces cerevisiae detection plasmid using for screening promoter elements.
Zhi-Fang WANG ; Zhi-Biao WANG ; Li-Na LI ; A N JIAN-MEI ; Wang-Wei ; Ke-Di CHENG ; Jian-Qiang KONG
Acta Pharmaceutica Sinica 2013;48(2):228-235
		                        		
		                        			
		                        			Synthetic biology of natural products is the design and construction of new biological systems by transferring a metabolic pathway of interest products into a chassis. Large-scale production of natural products is achieved by coordinate expression of multiple genes involved in genetic pathway of desired products. Promoters are cis-elements and play important roles in the balance of the metabolic pathways controlled by multiple genes by regulating gene expression. A detection plasmid of Saccharomyces cerevisiae was constructed based on DsRed-Monomer gene encoding for a red fluorescent protein. This plasmid was used for screening the efficient promoters applying for multiple gene-controlled pathways. First of all, eight pairs of primers specific to DsRed-Monomer gene were synthesized. The rapid cloning of DsRed-Monomer gene was performed based on step-by-step extension of a short region of the gene through a series of PCR reactions. All cloned sequences were confirmed by DNA sequencing. A vector named pEASYDs-M containing full-length DsRed-Monomer gene was constructed and was used as the template for the construction of S. cerevisiae expression vector named for pYeDP60-Ds-M. pYeDP60-Ds-M was then transformed into S. cerevisiae for heterologous expression of DsRed-Monomer gene. SDS-PAGE, Western blot and fluorescence microscopy results showed that the recombinant DsRed-Monomer protein was expressed successfully in S. cerevisiae. The well-characterized DsRed-Monomer gene was then cloned into a yeast expression vector pGBT9 to obtain a promoter detection plasmid pGBT9Red. For determination efficacy of pGBT9Red, six promoters (including four inducible promoters and two constitutive promoters) were cloned by PCR from the S. cerevisiae genome, and cloned into pGBT9Red by placing upstream of DsRed-Monomer gene, separately. The fluorescence microscopy results indicated that the six promoters (GAL1, GAL2, GAL7, GAL10, TEF2 and PGK1) can regulate the expression of DsRed-Monomer gene. The successful construction of pGBT9Red lays the foundation for further analysis of promoter activity and screening of promoter element libraries.
		                        		
		                        		
		                        		
		                        			Amino Acid Sequence
		                        			;
		                        		
		                        			Base Sequence
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Cloning, Molecular
		                        			;
		                        		
		                        			DNA Primers
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Gene Expression Regulation, Fungal
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			Luminescent Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plasmids
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Saccharomyces cerevisiae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Synthetic Biology
		                        			;
		                        		
		                        			Transformation, Genetic
		                        			
		                        		
		                        	
3.Engineering Saccharomyces cerevisiae for sclareol production.
Wei YANG ; Yongjin ZHOU ; Wujun LIU ; Hongwei SHEN ; Zongbao K ZHAO
Chinese Journal of Biotechnology 2013;29(8):1185-1192
		                        		
		                        			
		                        			Sclareol is a member of labdane type diterpenes mostly used as fragrance ingredient. To enable microbial production of sclareol, synthetic pathways were constructed by incorporating labdenediol diphosphate synthase (LPPS) and terpene synthase (TPS) of the plant Salvia sclarea into Saccharomyces cerevisiae. It was found that sclareol production could be benefited by overexpression of key enzyme for precursor biosynthesis, construction of fusion protein for substrate channeling, and removal of signal peptides from LPPS and TPS. Under optimal shake flask culture conditions, strain S6 produced 8.96 mg/L sclareol. These results provided useful information for development of heterologous hosts for production of terpenoids.
		                        		
		                        		
		                        		
		                        			Alkyl and Aryl Transferases
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Metabolic Engineering
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Metabolic Networks and Pathways
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Recombinant Fusion Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Saccharomyces cerevisiae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Salvia
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
4.Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production.
Fei YANG ; Meng CAO ; Yi JIN ; Xiushan YANG ; Shen TIAN
Chinese Journal of Biotechnology 2012;28(8):901-911
		                        		
		                        			
		                        			Saccharomyces cerevisiae is useful as a host for genetic engineering, since it allows the folding and glycosylation of expressed heterologous eukaryotic proteins and can be subjected to many genetic manipulations. Recent advancements in the yeast cell surface engineering developed strategies to genetically immobilize amylolytic, cellulolytic and xylanolytic enzymes on yeast cell surface for the production of fuel ethanol from biomass. We reviewed the basic principle and progress of S. cerevisiae cell-surface engineering and gave an insight into the recent technological developments in the production of bioethanol using surface engineered yeast.
		                        		
		                        		
		                        		
		                        			Biofuels
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			microbiology
		                        			;
		                        		
		                        			Ethanol
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Fermentation
		                        			;
		                        		
		                        			Metabolic Engineering
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Saccharomyces cerevisiae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
5.Progress in the sequence and structure properties, thermostability mechanism and molecular modification of xylose isomerase: a review.
Wei XU ; Ming YAN ; Pingkai OUYANG
Chinese Journal of Biotechnology 2011;27(12):1690-1701
		                        		
		                        			
		                        			With the development of low-carbon economy and renewable resource, fermentation of the pentose sugar xylose to produce ethanol becomes a very hot topic. The recombinant Saccharomyces cerevisiae can be constructed by expressing heterologous xylose isomerase (XI). Because Thermus thermophilus XI (TthXI) does not need cofactor, it has been developed for establishing the utilization pathway of xylose in S. cerevisiae. In this article, we reviewed the progress on xylose isomerase. We first introduced the primary properties, sequence and structure characters of xylose isomerase, and discussed its thermostability. The molecular modification of xylose isomerase, including of substrate specificity and thermostability were discussed in detail. Meanwhile, combined with our own research, we also discussed how to improve the xylose isomerase activity at room temperature. Finally, we suggested perspectives of xylose isomerase.
		                        		
		                        		
		                        		
		                        			Aldose-Ketose Isomerases
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Catalysis
		                        			;
		                        		
		                        			Enzyme Stability
		                        			;
		                        		
		                        			Hot Temperature
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Saccharomyces cerevisiae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Substrate Specificity
		                        			
		                        		
		                        	
6.Construction and expression of a novel HBeAg binding protein 1 of hepatitis B virus in yeast.
Yue LI ; Qi WANG ; Jun CHENG ; Hui-Juan WU
Chinese Journal of Experimental and Clinical Virology 2011;25(6):489-491
OBJECTIVETo construct the eukaryotic expression vector of HBEBP1 gene and express HBEBP1 recombinant protein in yeast.
METHODSPCR was performed to amplify the gene of HBEBP1 from the cDNA template origining from HepG2, and the gene was cloned into pGEM-T vector. After sequencing, the correct DNA fragment was cut from pGEM-T-HBEBP1 and inserted into yeast expression plasmid pGBKT7. The reconstructed plasmid pGBKT7-HBEBP1 was transformed into yeast cell AH109 and screened on the synthetic dropout nutrient medium (SD/-Trp/Kana). The yeast protein was isolated and analyzed with SDS-PAGE and Western Blot.
RESULTSThe eukaryotic expressive vector was constructed successfully. The results of Western Blot showed HBEBP1 protein was existed within yeast cells and the molecular weight of it was about 33 x 10(3).
CONCLUSIONSThe successful expression of HBEBP1 protein in yeast cells lay the foundation for studying biological function of HBEBP1.
Blotting, Western ; Carrier Proteins ; genetics ; Hepatitis B e Antigens ; metabolism ; Plasmids ; Recombinant Proteins ; biosynthesis ; Saccharomyces cerevisiae ; genetics
7.The effects of TATA-box in CYC1 promoter on the reporter gene regulated by ERE in the recombinant yeast cell.
Mingdian TAN ; Fangni LUO ; Yizhi GE ; Jingjing LI ; Hairong XU ; Xiangming LI
Journal of Biomedical Engineering 2011;28(3):553-558
		                        		
		                        			
		                        			The complementary oligonucleotides, each with two consensus estrogen response element (ERE)-sequences and 5'-Hind III and 3'-Sph I sticky ends were artificially synthesized. A solution with both the complementary DNA sequences was heated to 95'C and cooled down to room temperature to form double strand DNA (dsDNA). The set was cloned into the corresponding sites of CYC1 promoter of the pERE-CYC-yEGFP to yield pERE-CYCalpha-yEGFP vector. The two different reporter vectors, pERE-CYC-yEGFP and pERE-CYCalpha-yEGFP, the 2ERE, were placed in the CYC1 promoter. The former promoter downstream ERE contains alpha and beta-TATA boxes and the latter has only alpha-TATA box. The two different reporter vectors were transformed into the yeast cells that express human estrogen receptor alpha (ERalpha). Incubation of the recombinant yeasts with the six estrogenic compounds for 4 hours showed that the recombinant cell containing pERE-CYCalpha-yEGFP would give very poor dose-response curves, in contrast to the recombinant cell containing pERE-CYC-yEGFP which produced well-shaped dose-response curves. So it is necessary for this bioassay that alpha and beta-TATA boxes in the minimal CYC1 promoter when the promoter is used as a rapid and high throughput system for screening estrogenic chemical products.
		                        		
		                        		
		                        		
		                        			Base Sequence
		                        			;
		                        		
		                        			Cytochromes c
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Estrogen Receptor alpha
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Estrogens
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Saccharomyces cerevisiae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Saccharomyces cerevisiae Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			TATA-Box Binding Protein
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
8.Intrinsic prokaryotic promoter activity of SUMO gene and its applications in the protein expression system of Escherichia coli.
Yanhong QI ; Zhurong ZOU ; Huaying ZOU ; Yunliu FAN ; Chunyi ZHANG
Chinese Journal of Biotechnology 2011;27(6):952-962
		                        		
		                        			
		                        			Nowadays, SUMO fusion system is important for recombinant protein production in Escherichia coli, yet a few aspects remain to be improved, including the efficacy for vector construction and protein solubility. In this study, we found the SUMO gene Smt3 (Sm) of Saccharomyces cerevisiae conferred an unexpected activity of constitutive prokaryotic promoter during its PCR cloning, and the gene coding regions of SUMOs in most species had a sigma70-dependent prokaryotic promoter embedded, through the prediction via the BPROM program developed by Softberry. By combining the characters of Sm promoter activity and the Stu I site (added at the 3'-terminal of Sm), and introducing a His-tag and a hyper-acidic solubility-enhancing tag, we further constructed a set of versatile vectors for gene cloning and expression on the basis of Sm'-LacZa fusion gene. Experimentally started from these vectors, several target genes were subcloned and expressed through blue-white screening and SDS-PAGE analysis. The results manifest a few of expectable advantages such as rapid vector construction, highly soluble protein expression and feasible co-expression of correlated proteins. Conclusively, our optimized SUMO fusion technology herein could confer a large potential in E. coli protein expression system, and the simultaneously established co-expression vector systems could also be very useful in studying the protein-protein interactions in vivo.
		                        		
		                        		
		                        		
		                        			Amino Acid Sequence
		                        			;
		                        		
		                        			Base Sequence
		                        			;
		                        		
		                        			Escherichia coli
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Lac Operon
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Recombinant Fusion Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Saccharomyces cerevisiae Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Small Ubiquitin-Related Modifier Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Sumoylation
		                        			
		                        		
		                        	
9.Expression and characterization of Huwentoxin-XI (HWTX-XI) and its mutants.
Fan WANG ; Xiaojuan WANG ; Weiwen NING ; Zhonghua LIU
Chinese Journal of Biotechnology 2011;27(2):262-268
		                        		
		                        			
		                        			Huwentoxin-XI (HWTX-XI) is a protein isolated from the crude venom of spider Ornithoctonus huwena. It has 55 amino acid residues containing 6 cysteine residues forming 3 disulfide bonds. It shows potent inhibitory effect on trypsin and voltage-gated potassium channels in rat dorsal root ganglion cells. According to the structure-function relationship of HWTX-XI, we designed two mutants through mutation of potassium channel inhibition related amino acid residues (R5I, R10T,R25A and R5I,R25A) and then expressed them with high purity by using the vector pVT102U on Saccharamyces cerevisiae strain S78; The two mutants had the same trypsin inhibition activity as HWTX-XI, whereas their potassium channel inhibition activity and animal toxicity were much lower than those of HWTX-XI. This study is helpful for designing drugs of trypsin related diseases based on HWTX-XI.
		                        		
		                        		
		                        		
		                        			Amino Acid Sequence
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Molecular Sequence Data
		                        			;
		                        		
		                        			Mutant Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Potassium Channel Blockers
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Saccharomyces cerevisiae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Spider Venoms
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Spiders
		                        			;
		                        		
		                        			Trypsin Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
10.Screening of high lipid production Trichosporon fermentans mutants by transposon tagging mTn-lacZ/leu2 insertion.
Andong SONG ; Yubo LIU ; Hui XIE ; Fengqin WANG ; Xiaoming BAO
Chinese Journal of Biotechnology 2011;27(3):468-474
		                        		
		                        			
		                        			To improve microbial lipid production, we inserted mTn-lacZ/leu2 into Trichosporon fermentans 2.1368-Leu(-) to obtain high lipid production mutants. By observing the LacZ chromogenic change, the positive reaction between Cerulenin (inhibitor of fatty acid synthase) and phosphate vanillin, a higher lipid-producing mutant 2.1368-Leu(-)-7 grown on corn-stalk hydrolysate was obtained. The lipid content of this mutant reached 38.30% (8.97% higher than that of the control) and the lipid production rate was 8.35% (20.63% higher than that of the control). The rate of sugar utilization was 77%, meaning that 100 g corn-stalk could be converted to 8.32 g lipid. The study provided an effective method for microbial lipid production by using cheap raw materials for biodiesel.
		                        		
		                        		
		                        		
		                        			3-Isopropylmalate Dehydrogenase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Biofuels
		                        			;
		                        		
		                        			DNA Transposable Elements
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Fermentation
		                        			;
		                        		
		                        			Lac Operon
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Lipids
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Mutagenesis, Insertional
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Plant Stems
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Saccharomyces cerevisiae Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Trichosporon
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Zea mays
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail