1.Construction of a 10rolGLP-1-expressing glucose-lowing Saccharomyces cerevisiae by CRISPR/Cas9 technique.
Jinrui ZHANG ; Jiaming YANG ; Yujie MENG ; Shuguang XING ; Qiqi LIU ; Minggang LI
Chinese Journal of Biotechnology 2023;39(9):3747-3756
To develop a novel glucose-lowering biomedicine with potential benefits in the treatment of type 2 diabetes, we used the 10rolGLP-1 gene previously constructed in our laboratory and the CRISPR/Cas9 genome editing technique to create an engineered Saccharomyces cerevisiae strain. The gRNA expression vector pYES2-gRNA, the donor vector pNK1-L-PGK-10rolGLP-1-R and the Cas9 expression vector pGADT7-Cas9 were constructed and co-transformed into S. cerevisiae INVSc1 strain, with the PGK-10rolGLP-1 expressing unit specifically knocked in through homologous recombination. Finally, an S. cerevisiae strain highly expressing the 10rolGLP-1 with glucose-lowering activity was obtained. SDS-PAGE and Western blotting results confirmed that two recombinant strains of S. cerevisiae stably expressed the 10rolGLP-1 and exhibited the desired glucose-lowering property when orally administered to mice. Hypoglycemic experiment results showed that the recombinant hypoglycemic S. cerevisiae strain offered a highly hypoglycemic effect on the diabetic mouse model, and the blood glucose decline was adagio, which can avoid the dangerous consequences caused by rapid decline in blood glucose. Moreover, the body weight and other symptoms such as polyuria also improved significantly, indicating that the orally hypoglycemic S. cerevisiae strain that we constructed may develop into an effective, safe, economic, practical and ideal functional food for type 2 diabetes mellitus treatment.
Mice
;
Animals
;
Saccharomyces cerevisiae/metabolism*
;
CRISPR-Cas Systems
;
Glucose/metabolism*
;
Blood Glucose/metabolism*
;
Diabetes Mellitus, Type 2/therapy*
;
Hypoglycemic Agents/metabolism*
2.Expression of BmSPI38 tandem multimers in Escherichia coli and its antifungal activity.
Youshan LI ; Yuan WANG ; Rui ZHU ; Xi YANG ; Meng WEI ; Zhaofeng ZHANG ; Changqing CHEN
Chinese Journal of Biotechnology 2023;39(10):4275-4294
The aim of this study was to prepare tandem multimeric proteins of BmSPI38, a silkworm protease inhibitor, with better structural homogeneity, higher activity and stronger antifungal ability by protein engineering. The tandem multimeric proteins of BmSPI38 were prepared by prokaryotic expression technology. The effects of tandem multimerization on the structural homogeneity, inhibitory activity and antifungal ability of BmSPI38 were explored by in-gel activity staining of protease inhibitor, protease inhibition assays and fungal growth inhibition experiments. Activity staining showed that the tandem expression based on the peptide flexible linker greatly improved the structural homogeneity of BmSPI38 protein. Protease inhibition experiments showed that the tandem trimerization and tetramerization based on the linker improved the inhibitory ability of BmSPI38 to microbial proteases. Conidial germination assays showed that His6-SPI38L-tetramer had stronger inhibition on conidial germination of Beauveria bassiana than that of His6-SPI38-monomer. Fungal growth inhibition assay showed that the inhibitory ability of BmSPI38 against Saccharomyces cerevisiae and Candida albicans could be enhanced by tandem multimerization. The present study successfully achieved the heterologous active expression of the silkworm protease inhibitor BmSPI38 in Escherichia coli, and confirmed that the structural homogeneity and antifungal ability of BmSPI38 could be enhanced by tandem multimerization. This study provides important theoretical basis and new strategies for cultivating antifungal transgenic silkworm. Moreover, it may promote the exogenous production of BmSPI38 and its application in the medical field.
Animals
;
Antifungal Agents/pharmacology*
;
Escherichia coli/metabolism*
;
Proteins/metabolism*
;
Protease Inhibitors/chemistry*
;
Bombyx/chemistry*
;
Saccharomyces cerevisiae/metabolism*
;
Peptide Hydrolases
3.Advances in the application of yeast surface display technology.
Lili ZHAO ; Bingkai SU ; Shushu DU ; Wenting DING ; Rongzeng LIU
Chinese Journal of Biotechnology 2023;39(11):4358-4375
Yeast surface display (YSD) is a technology that fuses the exogenous target protein gene sequence with a specific vector gene sequence, followed by introduction into yeast cells. Subsequently, the target protein is expressed and localized on the yeast cell surface by using the intracellular protein transport mechanism of yeast cells, whereas the most widely used YSD system is the α-agglutinin expression system. Yeast cells possess the eukaryotic post-translational modification mechanism, which helps the target protein fold correctly. This mechanism could be used to display various eukaryotic proteins, including antibodies, receptors, enzymes, and antigenic peptides. YSD has become a powerful protein engineering tool in biotechnology and biomedicine, and has been used to improve a broad range of protein properties including affinity, specificity, enzymatic function, and stability. This review summarized recent advances in the application of YSD technology from the aspects of library construction and screening, antibody engineering, protein engineering, enzyme engineering and vaccine development.
Saccharomyces cerevisiae/metabolism*
;
Protein Engineering
;
Biotechnology
;
Antibodies/metabolism*
;
Amino Acid Sequence
4.Production of limonene and its derivative in Saccharomyces cerevisiae via metabolic engineering.
Yao HUANG ; Haiquan YANG ; Wei SHEN ; Yuanyuan XIA ; Yu CAO ; Xianzhong CHEN
Chinese Journal of Biotechnology 2023;39(11):4647-4662
Limonene and its derivative perillic acid are widely used in food, cosmetics, health products, medicine and other industries as important bioactive natural products. However, inefficient plant extraction and high energy-consuming chemical synthesis hamper the industrial production of limonene and perillic acid. In this study, limonene synthase from Mentha spicata was expressed in Saccharomyces cerevisiae by peroxisome compartmentalization, and the yield of limonene was 0.038 mg/L. The genes involved in limonene synthesis, ERG10, ERG13, tHMGR, ERG12, ERG8, IDI1, MVD1, ERG20ww and tLS, were step-wise expressed via modular engineering to study their effects on limonene yield. The yield of limonene increased to 1.14 mg/L by increasing the precursor module. Using the plasmid with high copy number to express the above key genes, the yield of limonene significantly increased up to 86.74 mg/L, which was 4 337 times higher than that of the original strain. Using the limonene-producing strain as the starting strain, the production of perillic acid was successfully achieved by expressing cytochrome P450 enzyme gene from Salvia miltiorrhiza, and the yield reached 4.42 mg/L. The results may facilitate the construction of cell factory with high yield of monoterpene products by S. cerevisiae.
Saccharomyces cerevisiae/metabolism*
;
Limonene/metabolism*
;
Metabolic Engineering
;
Monoterpenes/metabolism*
5.Advances on the production of organic acids by yeast.
Ruiyuan ZHANG ; Yifan ZHU ; Duwen ZENG ; Shihao WEI ; Yachao FAN ; Sha LIAO ; Xinqing ZHAO ; Fengli ZHANG ; Lin ZHANG
Chinese Journal of Biotechnology 2023;39(6):2231-2247
Organic acids are organic compounds that can be synthesized using biological systems. They often contain one or more low molecular weight acidic groups, such as carboxyl group and sulphonic group. Organic acids are widely used in food, agriculture, medicine, bio-based materials industry and other fields. Yeast has unique advantages of biosafety, strong stress resistance, wide substrate spectrum, convenient genetic transformation, and mature large-scale culture technology. Therefore, it is appealing to produce organic acids by yeast. However, challenges such as low concentration, many by-products and low fermentation efficiency still exist. With the development of yeast metabolic engineering and synthetic biology technology, rapid progress has been made in this field recently. Here we summarize the progress of biosynthesis of 11 organic acids by yeast. These organic acids include bulk carboxylic acids and high-value organic acids that can be produced naturally or heterologously. Finally, future prospects in this field were proposed.
Saccharomyces cerevisiae/metabolism*
;
Organic Chemicals
;
Carboxylic Acids/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Acids
6.Advances in the production of chemicals by organelle compartmentalization in Saccharomyces cerevisiae.
Tao LUAN ; Mengqi YIN ; Ming WANG ; Xiulong KANG ; Jianzhi ZHAO ; Xiaoming BAO
Chinese Journal of Biotechnology 2023;39(6):2334-2358
As a generally-recognized-as-safe microorganism, Saccharomyces cerevisiae is a widely studied chassis cell for the production of high-value or bulk chemicals in the field of synthetic biology. In recent years, a large number of synthesis pathways of chemicals have been established and optimized in S. cerevisiae by various metabolic engineering strategies, and the production of some chemicals have shown the potential of commercialization. As a eukaryote, S. cerevisiae has a complete inner membrane system and complex organelle compartments, and these compartments generally have higher concentrations of the precursor substrates (such as acetyl-CoA in mitochondria), or have sufficient enzymes, cofactors and energy which are required for the synthesis of some chemicals. These features may provide a more suitable physical and chemical environment for the biosynthesis of the targeted chemicals. However, the structural features of different organelles hinder the synthesis of specific chemicals. In order to ameliorate the efficiency of product biosynthesis, researchers have carried out a number of targeted modifications to the organelles grounded on an in-depth analysis of the characteristics of different organelles and the suitability of the production of target chemicals biosynthesis pathway to the organelles. In this review, the reconstruction and optimization of the biosynthesis pathways for production of chemicals by organelle mitochondria, peroxisome, golgi apparatus, endoplasmic reticulum, lipid droplets and vacuole compartmentalization in S. cerevisiae are reviewed in-depth. Current difficulties, challenges and future perspectives are highlighted.
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
;
Golgi Apparatus/metabolism*
;
Metabolic Engineering
;
Vacuoles/metabolism*
7.Functional analysis on sucrose transporters in sweet potato.
Yiran LIU ; Zhengdan WU ; Weitai WU ; Chaobin YANG ; Cairui CHEN ; Kai ZHANG
Chinese Journal of Biotechnology 2023;39(7):2772-2793
Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.
Ipomoea batatas/metabolism*
;
Arabidopsis/metabolism*
;
Sucrose/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
DNA, Complementary
;
Phylogeny
;
Plants, Genetically Modified/genetics*
;
Membrane Transport Proteins/metabolism*
;
Starch/metabolism*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
8.Construction of cell factories for production of patchoulol in Saccharomyces cerevisiae.
Shuang GUO ; Dong WANG ; Ting-Ting YANG ; Wen-Hao LI ; Rong-Sheng LI ; Guo-Wei ZHANG ; Xue-Li ZHANG ; Zhu-Bo DAI
China Journal of Chinese Materia Medica 2023;48(9):2316-2324
Patchoulol is an important sesquiterpenoid in the volatile oil of Pogostemon cablin, and is also considered to be the main contributing component to the pharmacological efficacy and fragrance of P. cablin oil, which has antibacterial, antitumor, antioxidant, and other biological activities. Currently, patchoulol and its essential oil blends are in high demand worldwide, but the traditional plant extraction method has many problems such as wasting land and polluting the environment. Therefore, there is an urgent need for a new method to produce patchoulol efficiently and at low cost. To broaden the production method of patchouli and achieve the heterologous production of patchoulol in Saccharomyces cerevisiae, the patchoulol synthase(PS) gene from P. cablin was codon optimized and placed under the inducible strong promoter GAL1 to transfer into the yeast platform strain YTT-T5, thereby obtaining strain PS00 with the production of(4.0±0.3) mg·L~(-1) patchoulol. To improve the conversion rate, this study used protein fusion method to fuse SmFPS gene from Salvia miltiorrhiza with PS gene, leading to increase the yield of patchoulol to(100.9±7.4) mg·L~(-1) by 25-folds. By further optimizing the copy number of the fusion gene, the yield of patchoulol was increased by 90% to(191.1±32.7) mg·L~(-1). By optimizing the fermentation process, the strain was able to achieve a patchouli yield of 2.1 g·L~(-1) in a high-density fermentation system, which was the highest yield so far. This study provides an important basis for the green production of patchoulol.
Saccharomyces cerevisiae/metabolism*
;
Sesquiterpenes/metabolism*
;
Pogostemon
;
Oils, Volatile/metabolism*
9.Dynamic control of ERG20 expression to improve production of monoterpenes by engineering Saccharomyces cerevisiae.
Rong-Sheng LI ; Dong WANG ; Yu-Song SHI ; Li-Ping XU ; Xue-Li ZHANG ; Kou WANG ; Zhu-Bo DAI
China Journal of Chinese Materia Medica 2022;47(4):897-905
Monoterpenes are widely used in cosmetics, food, medicine, agriculture and other fields. With the development of synthetic biology, it is considered as a potential way to create microbial cell factories to produce monoterpenes. Engineering Saccharomyces cerevisiae to produce monoterpenes has been a research hotspot in synthetic biology. In S. cerevisiae, the production of geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) is catalyzed by a bifunctional enzyme farnesyl pyrophosphate synthetase(encoded by ERG20 gene) which is inclined to synthesize FPP essential for yeast growth. Therefore, reasonable control of FPP synthesis is the basis for efficient monoterpene synthesis in yeast cell factories. In order to achieve dynamic control from GPP to FPP biosynthesis in S. cerevisiae, we obtained a novel chassis strain HP001-pERG1-ERG20 by replacing the ERG20 promoter of the chassis strain HP001 with the promoter of cyclosqualene cyclase(ERG1) gene. Further, we reconstructed the metabolic pathway by using GPP and neryl diphosphate(NPP), cis-GPP as substrates in HP001-pERG1-ERG20. The yield of GPP-derived linalool increased by 42.5% to 7.6 mg·L~(-1), and that of NPP-derived nerol increased by 1 436.4% to 8.3 mg·L~(-1). This study provides a basis for the production of monoterpenes by microbial fermentation.
Fermentation
;
Geranyltranstransferase/genetics*
;
Monoterpenes/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
10.Effect of key enzymes ubiquitination sites on the biosynthesis of naringenin.
Mingjia LI ; Jingwen ZHOU ; Jianghua LI
Chinese Journal of Biotechnology 2022;38(2):691-704
Flavonoids have a variety of biological activities and have important applications in food, medicine, cosmetics, and many other fields. Naringenin is a platform chemical for the biosynthesis of many important flavonoids. Ubiquitination plays a pivotal role in the post-translational modification of proteins and participates in the regulation of cellular activities. Ubiquitinated proteins can be degraded by the ubiquitin-protease system, which is important for maintaining the physiological activities of cells, and may also exert a significant impact on the expression of exogenous proteins. In this study, a real-time in-situ detection system for ubiquitination modification has been established in Saccharomyces cerevisiae by using a fluorescence bimolecular complementation approach. The ubiquitination level of protein was characterized by fluorescence intensity. By using the approach, the potential ubiquitination sites of proteins involved in the naringenin biosynthesis pathway have been obtained. The lysine residues of the relevant ubiquitination sites were mutated to arginine to reduce the ubiquitination level. The mutants of tyrosine ammonia-lyase (FjTAL) and chalcone synthase (SjCHS, SmCHS) showed decreased fluorescence, suggested that a decreased ubiquitination level. After fermentation verification, the S. cerevisiae expressing tyrosine ammonia-lyase FjTAL mutant FjTAL-K487R accumulated 74.2 mg/L p-coumaric acid at 72 h, which was 32.3% higher than that of the original FjTAL. The strains expressing chalcone synthase mutants showed no significant change in the titer of naringenin. The results showed that mutation of the potential ubiquitination sites of proteins involved in the naringenin biosynthesis pathway could increase the titer of p-coumaric acid and have positive effect on naringenin biosynthesis.
Biosynthetic Pathways
;
Flavanones/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Ubiquitination

Result Analysis
Print
Save
E-mail