1.Construction, screening and immunogenicity of the recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2.
Renshuang ZHAO ; Yilong ZHU ; Chao SHANG ; Jicheng HAN ; Zirui LIU ; Zhiru XIU ; Shanzhi LI ; Yaru LI ; Xia YANG ; Xiao LI ; Ningyi JIN ; Xin JIN ; Yiquan LI
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):19-25
Objective To construct a recombinant poxvirus vector vaccine, rVTTδTK-RBD, and to evaluate its safety and immunogenicity. Methods The receptor-binding domain (RBD) gene was synthesized with reference to the gene sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was inserted into the polyclonal site of the self-constructed recombinant plasmid pSTKE, to construct the recombinant poxvirus shuttle vector pSTKE-RBD. This was then transfected into BHK-21 cells pre-infected with the vaccinia virus Tiantan strain (VTT). The recombinant poxvirus rVTTδTK-RBD was successfully obtained after several rounds of fluorescence phage screening. The effect of rVTTδTK-RBD on the body mass of BALB/c mice was detected after immunizing mice by intra-nasal vaccination. The levels of specific and neutralizing antibodies produced by rVTTδTK-RBD on BALB/c mice were analyzed after immunizing mice intramuscularly. The effect of rVTTδTK-RBD on T cell subsets in BALB/c mice was detected by flow cytometry. Results Through homologous recombination, enhanced green fluorescent protein (EGFP) screening marker, and multiple rounds of fluorescent phosphorescence phage screening, a recombinant poxvirus rVTTδTK-RBD, expressing RBD with deletions in the thymidine kinase (TK) gene, was successfully obtained, which was validated by PCR. The in vivo experiments on BALB/c mice showed that rVTTδTK-RBD was highly immunogenic against SARS-CoV-2 and significantly reduced toxicity to the body compared to the parental strain VTT. Conclusion The recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2 is successfully constructed and obtained, with its safety and immunogenicity confirmed through various experiments.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
COVID-19
;
Vaccines, Synthetic/genetics*
;
Genes, Reporter
;
Bacteriophages
;
Mice, Inbred BALB C
2.Research progress in vaccines of SARS-CoV-2.
Xinbin GE ; Qigan QU ; Zeguang WANG ; Shungeng ZHANG ; Yan CHI ; Chunhui SHAN ; Ruihan LIU ; Qing ZHAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):946-951
Since the outbreak of corona virus disease 2019 (COVID-19), viral strains have mutated and evolved. Vaccine research is the most direct and effective way to control COVID-19. According to different production mechanisms, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines included inactivated virus vaccine, live attenuated vaccine, mRNA vaccine, DNA vaccine, viral vector vaccine, virus-like particle vaccine and protein subunit vaccine. Among them, viral protein subunit vaccine has a wide application prospect due to its high safety and effectiveness. Viral nucleocapsid protein has high immunogenicity and low variability which could be a new direction for vaccine production. We summarized the current development of vaccine research by reviewing the current progress, vaccine safety and vaccine immune efficiency. It is hoped that the proposed possible development strategies could provide a reference for epidemic prevention work in future.
Humans
;
SARS-CoV-2/genetics*
;
COVID-19/prevention & control*
;
Protein Subunits
;
Vaccines, DNA
;
Nucleocapsid Proteins
3.Establishment and preliminary application of quantitative real-time PCR assay for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA.
Xiao Juan ZHU ; Yin CHEN ; Bin WU ; Yi Yue GE ; Tao WU ; Qiao QIAO ; Kang Chen ZHAO ; Lun Biao CUI
Chinese Journal of Preventive Medicine 2023;57(2):268-272
Objective: To establish a rapid and specific quantitative real-time PCR (qPCR) method for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA (SgN) in patients with COVID-19 or environmental samples. Methods: The qPCR assay was established by designing specific primers and TaqMan probe based on the SARS-CoV-2 genomic sequence in Global Initiative of Sharing All Influenza Data (GISAID) database. The reaction conditions were optimized by using different annealing temperature, different primers and probe concentrations and the standard curve was established. Further, the specificity, sensitivity and repeatability were also assessed. The established SgN and genomic RNA (gRNA) qPCR assays were both applied to detect 21 environmental samples and 351 clinical samples containing 48 recovered patients. In the specimens with both positive gRNA and positive SgN, 25 specimens were inoculated on cells. Results: The primers and probes of SgN had good specificity for SARS-CoV-2. The minimum detection limit of the preliminarily established qPCR detection method for SgN was 1.5×102 copies/ml, with a coefficient of variation less than 1%. The positive rate of gRNA in 372 samples was 97.04% (361/372). The positive rates of SgN in positive environmental samples and positive clinical samples were 36.84% (7/19) and 49.42% (169/342), respectively. The positive rate and copy number of SgN in Wild strain were lower than those of SARS-CoV-2 Delta strain. Among the 25 SgN positive samples, 12 samples within 5 days of sampling time were all isolated with virus; 13 samples sampled for more than 12 days had no cytopathic effect. Conclusion: A qPCR method for the detection of SARS-CoV-2 SgN has been successfully established. The sensitivity, specificity and repeatability of this method are good.
Humans
;
SARS-CoV-2/genetics*
;
COVID-19/diagnosis*
;
Subgenomic RNA
;
Real-Time Polymerase Chain Reaction/methods*
;
RNA, Viral/genetics*
;
Sensitivity and Specificity
;
Nucleocapsid/chemistry*
;
COVID-19 Testing
4.A CRISPR activation screen identifies genes that enhance SARS-CoV-2 infection.
Fei FENG ; Yunkai ZHU ; Yanlong MA ; Yuyan WANG ; Yin YU ; Xinran SUN ; Yuanlin SONG ; Zhugui SHAO ; Xinxin HUANG ; Ying LIAO ; Jingyun MA ; Yuping HE ; Mingyuan WANG ; Longhai TANG ; Yaowei HUANG ; Jincun ZHAO ; Qiang DING ; Youhua XIE ; Qiliang CAI ; Hui XIAO ; Chun LI ; Zhenghong YUAN ; Rong ZHANG
Protein & Cell 2023;14(1):64-68
5.Research Progress in Antibody Responses Against SARS-CoV-2 Variants of Concern.
Acta Academiae Medicinae Sinicae 2023;45(3):454-463
So far,the coronavirus disease 2019(COVID-19)has been persisting for nearly three years,infecting about 700 million people and causing more than 6 million deaths,which has seriously affected the human society.According to Global Initiative on Sharing All Influenza Data,there are more than 12 million SARS-CoV-2 variants,of which the five major variants of concern are Alpha,Beta,Gamma,Delta and Omicron.Their infectivity,pathogencity,and neutralization resistance have changed greatly compared with the original strain,which has brought great pressure to the prevention and control of the pandemic.Antibody level testing is critical for confirming infection,epidemiological investigation,vaccine development,and neutralizing drug preparation.Focusing on the humoral immunity against SARS-CoV-2,this paper introduces the mutation sites,neutralization resistance,and vaccination efficacy of the five variants of concern,and briefly summarizes the evolutionary characteristics,future mutation directions,and host immunity.
Humans
;
SARS-CoV-2/genetics*
;
Antibody Formation
;
COVID-19
;
Gamma Rays
;
Antibodies, Neutralizing
;
Antibodies, Viral
6.Myocardial injury caused by infection of coronavirus.
Yanxia HUANG ; Mei MENG ; Dechang CHEN
Chinese Critical Care Medicine 2023;35(6):665-668
Coronaviruses are single-stranded RNA viruses that are common in animals. In the past 20 years, there have been three large-scale epidemics of coronaviruses, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease (COVID). Heart disease is an independent risk factor for severe COVID. At the same time, SARS-CoV-2 infection is often complicated with myocardial injury, which is closely related to poor prognosis. The receptors of SARS coronavirus are angiotensin-converting enzyme 2 (ACE2) and CD209L, among which ACE2 is the main receptor, and ACE2 is abundant in the heart. The receptor of MERS-coronavirus is dipeptide peptidase 4 (DPP4), which is not expressed in myocardial cells, but existed in vascular endothelial cells and blood. These receptors are important factors for the myocardial injury caused by coronavirus infection.
Animals
;
COVID-19
;
Angiotensin-Converting Enzyme 2
;
SARS-CoV-2
;
Endothelial Cells
;
Peptidyl-Dipeptidase A/genetics*
7.Rapid detection and genotyping of SARS-CoV-2 Omicron BA.4/5 variants using a RT-PCR and CRISPR-Cas12a-based assay.
Yunan MA ; Lirong ZOU ; Yuanhao LIANG ; Quanxun LIU ; Qian SUN ; Yulian PANG ; Hongqing LIN ; Xiaoling DENG ; Shixing TANG
Journal of Southern Medical University 2023;43(4):516-526
OBJECTIVE:
To establish a rapid detection and genotyping method for SARS-CoV-2 Omicron BA.4/5 variants using CRISPPR-Cas12a gene editing technology.
METHODS:
We combined reverse transcription-polymerase chain reaction (RT-PCR) and CRISPR gene editing technology and designed a specific CRISPPR RNA (crRNA) with suboptimal protospacer adjacent motifs (PAM) for rapid detection and genotyping of SARS- CoV-2 Omicron BA.4/5 variants. The performance of this RT- PCR/ CRISPPR-Cas12a assay was evaluated using 43 clinical samples of patients infected by wild-type SARS-CoV-2 and the Alpha, Beta, Delta, Omicron BA. 1 and BA. 4/5 variants and 20 SARS- CoV- 2-negative clinical samples infected with 11 respiratory pathogens. With Sanger sequencing method as the gold standard, the specificity, sensitivity, concordance (Kappa) and area under the ROC curve (AUC) of RT-PCR/CRISPPR-Cas12a assay were calculated.
RESULTS:
This assay was capable of rapid and specific detection of SARS- CoV-2 Omicron BA.4/5 variant within 30 min with the lowest detection limit of 10 copies/μL, and no cross-reaction was observed in SARS-CoV-2-negative clinical samples infected with 11 common respiratory pathogens. The two Omicron BA.4/5 specific crRNAs (crRNA-1 and crRNA-2) allowed the assay to accurately distinguish Omicron BA.4/5 from BA.1 sublineage and other major SARS-CoV-2 variants of concern. For detection of SARS-CoV-2 Omicron BA.4/5 variants, the sensitivity of the established assay using crRNA-1 and crRNA-2 was 97.83% and 100% with specificity of 100% and AUC of 0.998 and 1.000, respectively, and their concordance rate with Sanger sequencing method was 92.83% and 96.41%, respectively.
CONCLUSION
By combining RT-PCR and CRISPPR-Cas12a gene editing technology, we successfully developed a new method for rapid detection and identification of SARS-CoV-2 Omicron BA.4/5 variants with a high sensitivity, specificity and reproducibility, which allows rapid detection and genotyping of SARS- CoV-2 variants and monitoring of the emerging variants and their dissemination.
Humans
;
COVID-19
;
CRISPR-Cas Systems
;
Genotype
;
Reproducibility of Results
;
Reverse Transcriptase Polymerase Chain Reaction
;
SARS-CoV-2/genetics*
;
RNA
;
COVID-19 Testing
8.Research and application of the SARS-CoV-2 vaccine based on adenovirus vector technology platform.
Ying ZHANG ; Wen Zhou YU ; Zun Dong YIN ; Tong Zhan WANG ; Xiao Dong SUN ; Ai Qiang XU
Chinese Journal of Preventive Medicine 2023;57(7):1082-1095
During the global efforts to prevent and control the COVID-19 pandemic, extensive research and development of SARS-CoV-2 vaccines using various technical approaches have taken place. Among these, vaccines based on adenovirus vector have gained substantial knowledge and experience in effectively combating potential emerging infectious diseases, while also providing novel ideas and methodologies for vaccine research and development (R&D). This comprehensive review focuses on the adenovirus vector technology platform in vaccine R&D, emphasizing the importance of mucosal immunity induced by adenoviral vector-based vaccine for COVID-19 prevention. Furthermore, it analyzes the key technical challenges and obstacles encountered in the development of vaccines based on the adenovirus vector technology platform, with the aim of providing valuable insights and references for researchers and professionals in related fields.
Humans
;
COVID-19 Vaccines
;
Pandemics/prevention & control*
;
COVID-19/prevention & control*
;
SARS-CoV-2/genetics*
;
Viral Vaccines/genetics*
;
Adenoviridae/genetics*
;
Technology
9.Genome sequence analysis of two SARS-CoV-2 virus infections in Inner Mongolia, 2022.
Guo Qing YANG ; Chao MIN ; Jian SONG ; Xiao Feng JIANG ; Hua YUE ; Xiao Wei NAN ; Zhen YAN ; Ai Tao LU ; Yan HAI ; Zhan Song ZHU
Chinese Journal of Preventive Medicine 2023;57(10):1630-1634
The target gene sequences of the novel coronaviruses obtained by sequencing were compared with the reference sequences to analyze the genetic variation of the two cases of the novel coronaviruses from Inner Mongolia Autonomous Region in 2022 and to explore the sources of infection. The results showed that the two sequences belonged to different evolutionary branches, Delta (AY.122) and Omicron (BA.1.1), respectively. hCoV-19/Inner Mongolia/IVDC-591/2022 had 48 single nucleotide polymorphisms on the genome sequences, sharing 40 nucleotide mutation sites with a Mongolian strain; hCoV-19/Inner Mongolia/IVDC-592/2022 genome shared 57 nucleotide mutation sites with a UK strain, and the nucleotide mutation site identity was 100% (57/57). Phylogenetic analysis showed that the target gene sequences were not directly related to domestic novel coronavirus sequences during the same period, but were related to isolates from Europe and Mongolia.
Humans
;
COVID-19
;
SARS-CoV-2/genetics*
;
Phylogeny
;
Genome, Viral
;
Nucleotides
;
Sequence Analysis
10.Genome sequence analysis of two SARS-CoV-2 virus infections in Inner Mongolia, 2022.
Guo Qing YANG ; Chao MIN ; Jian SONG ; Xiao Feng JIANG ; Hua YUE ; Xiao Wei NAN ; Zhen YAN ; Ai Tao LU ; Yan HAI ; Zhan Song ZHU
Chinese Journal of Preventive Medicine 2023;57(10):1630-1634
The target gene sequences of the novel coronaviruses obtained by sequencing were compared with the reference sequences to analyze the genetic variation of the two cases of the novel coronaviruses from Inner Mongolia Autonomous Region in 2022 and to explore the sources of infection. The results showed that the two sequences belonged to different evolutionary branches, Delta (AY.122) and Omicron (BA.1.1), respectively. hCoV-19/Inner Mongolia/IVDC-591/2022 had 48 single nucleotide polymorphisms on the genome sequences, sharing 40 nucleotide mutation sites with a Mongolian strain; hCoV-19/Inner Mongolia/IVDC-592/2022 genome shared 57 nucleotide mutation sites with a UK strain, and the nucleotide mutation site identity was 100% (57/57). Phylogenetic analysis showed that the target gene sequences were not directly related to domestic novel coronavirus sequences during the same period, but were related to isolates from Europe and Mongolia.
Humans
;
COVID-19
;
SARS-CoV-2/genetics*
;
Phylogeny
;
Genome, Viral
;
Nucleotides
;
Sequence Analysis

Result Analysis
Print
Save
E-mail