1.Emergency medical response strategy for the 2025 Dingri, Tibet Earthquake
Chenggong HU ; Xiaoyang DONG ; Hai HU ; Hui YAN ; Yaowen JIANG ; Qian HE ; Chang ZOU ; Si ZHANG ; Wei DONG ; Yan LIU ; Huanhuan ZHONG ; Ji DE ; Duoji MIMA ; Jin YANG ; Qiongda DAWA ; Lü ; JI ; La ZHA ; Qiongda JIBA ; Lunxu LIU ; Lei CHEN ; Dong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):421-426
This paper systematically summarizes the practical experience of the 2025 Dingri earthquake emergency medical rescue in Tibet. It analyzes the requirements for earthquake medical rescue under conditions of high-altitude hypoxia, low temperature, and low air pressure. The paper provides a detailed discussion on the strategic layout of earthquake medical rescue at the national level, local government level, and through social participation. It covers the construction of rescue organizational systems, technical systems, material support systems, and information systems. The importance of building rescue teams is emphasized. In high-altitude and cold conditions, rapid response, scientific decision-making, and multi-party collaboration are identified as key elements to enhance rescue efficiency. By optimizing rescue organizational structures, strengthening the development of new equipment, and promoting telemedicine technologies, the precision and effectiveness of medical rescue can be significantly improved, providing important references for future similar disaster rescues.
3.Burden of hepatitis B-associated diseases in China from 1990 to 2030.
L YAO ; S LIN ; J HUANG ; Y WU
Chinese Journal of Schistosomiasis Control 2023;35(5):464-475
OBJECTIVE:
To measure the burden of hepatitis B-associated diseases in China from 1990 to 2019, and to predict its changes from 2020 to 2030.
METHODS:
The age-standardized prevalence, incidence, mortality and disability-adjusted life years (DALY) rate of hepatitis B-associated diseases in China from 1990 to 2019 were extracted from the Global Burden of Disease 2019 (GBD 2019) data resources, and the trends in burdens of hepatitis B-associated diseases were evaluated from 1990 to 2019 using estimated annual percentage change (EAPC) and annual percent change (APC). In addition, the changes in the burden of hepatitis B-associated diseases were predicted in China from 2020 to 2023 using the Bayesian model.
RESULTS:
The overall incidence of hepatitis B-associated diseases reduced from 2 725.98/105 in 1990 to 1 397.31/105 in 2019 in China [estimated annual percentage change (EAPC) = -2.35%, 95% confidential interval (CI): (-2.58%, -2.13%)], with a reduction in the prevalence from 12 239.53/105 in 1990 to 6 566.12/105 in 2019 [EAPC = -2.34%, 95% CI: (-2.54%, -2.14%)], a reduction in the mortality from 24.67/105 in 1990 to 8.07/105 in 2019 [EAPC = -4.92%, 95% CI: (-5.37%, -4.47%)], and a reduction in the DALY rate from 793.38/105 in 1990 to 247.71/105 in 2019 [(EAPC = -5.15%, 95% CI: (-5.64%, -4.66%)]. The DALY rate of hepatitis B-associated diseases were mainly attributed to liver cancer, and the DALY rate of hepatitis B-associated diseases appeared a tendency towards a rise in China from 2012 to 2019 [APC = 1.30%, 95% CI: (0.16%, 2.45%)]. The overall burden of hepatitis Bassociated diseases was higher in males than in females, and the DALY rate of hepatitis B-associated diseases increased with age, with the greatest DALY rate seen among patients at ages of 50 to 69 years. The overall incidence of hepatitis B-associated diseases was projected to be 866.79/105 in China in 2030, with the greatest incidence seen in acute hepatitis B (854.87/105), and the burden of hepatitis B-associated diseases was predicted to decline in China from 2020 to 2030; however, the burden of liver disease was projected to appear a tendency towards a rise.
CONCLUSIONS
The burden of hepatitis B-associated diseases appears an overall tendency towards a decline in China from 1990 to 2030; however, the burden of liver cancer appears a tendency towards aggravation. Early diagnosis and treatment of liver cancer should be given a high priority.
Male
;
Female
;
Humans
;
Middle Aged
;
Aged
;
Bayes Theorem
;
Quality-Adjusted Life Years
;
Hepatitis B/epidemiology*
;
Liver Neoplasms/epidemiology*
;
China/epidemiology*
;
Incidence
4.Analysis and prediction of burden of viral hepatitis C-associated diseases in China from 1990 to 2044.
M ZHOU ; L YAO ; Y WU ; S LIN ; J HUANG
Chinese Journal of Schistosomiasis Control 2023;35(5):476-485
OBJECTIVE:
To measure the burden of hepatitis C-associated diseases in China from 1990 to 2019, and to predict its changes from 2020 to 2044, so as to provide insights into formulation of the targeted hepatitis C control strategy.
METHODS:
The total burden due to hepatitis C-associated diseases in China from 1990 to 2019 were extracted from the Global Burden of Disease 2019 (GBD 2019) data resources, and the trends in age-standardized prevalence, incidence, mortality and disability-adjusted life years (DALYs) rate of hepatitis C-associated acute hepatitis C (AHC), chronic liver diseases (CLD) and liver cancer in China from 1990 to 2019 were evaluated in China from 1990 to 2019 using estimated annual percentage change (EAPC). In addition, the changes in the burden of hepatitis C-associated diseases were predicted in China from 2020 to 2044 using a Bayesian model.
RESULTS:
The prevalence, incidence, mortality and DALY rate of hepatitis C-associated diseases all appeared an overall tendency towards a decline in China from 1990 to 2019 (EAPC = -2.64%, -2.24%, -3.81% and -3.90%, respectively); however, there was a minor rise in the incidence and prevalence of hepatitis C-associated diseases from 2015 to 2019. The overall prevalence of hepatitis C-associated diseases reduced from 2 152.7/105 in 1990 to 1 254.1/105 in 2019 in China, with a reduction of 41.7%. The overall incidence reduced from 87.9/105 in 1990 to 55.0/105 in 2019 in China, with a reduction of 37.4%, and the highest incidence was seen for AHC, followed by CLD and liver cancer. The overall mortality and DALY rate of hepatitis C-associated diseases was 4.0/105 and 100.8/105 in China from 1990 to 2019, with CLD showing the largest contributions to the gross mortality and DALY. The mortality and DALY rate of hepatitis C-associated diseases were 5.5/105 and 142.4/105 among men in China in 2019, which were both much higher than among women (2.8/105 and 60.3/105, respectively), and the overall prevalence (1 604.9/105), mortality (30.2/105) and DALYs (437.1/105) of hepatitis C-associated diseases were all highest among patients at ages of 70 years and older, and the highest incidence was seen among patients at ages of 0 to 9 years (167.3/105). The incidence of hepatitis C-associated diseases was predicted to rise in China from 2020 to 2044; however, the DALY rate was projected to appear a tendency towards a decline.
CONCLUSIONS
Although the burden of hepatitis C-associated diseases showed a tendency towards a decline in China from 1990 to 2019, the burden remained high, and was predicted to slightly rise from 2020 to 2044. High attention should be paid to screening of hepatitis C among infants and treatment among adults.
Male
;
Adult
;
Infant
;
Humans
;
Female
;
Bayes Theorem
;
Quality-Adjusted Life Years
;
Hepatitis C/epidemiology*
;
Liver Neoplasms/epidemiology*
;
China/epidemiology*
;
Incidence
7.Development and validation of a prognostic prediction model for patients with stage Ⅰ to Ⅲ colon cancer incorporating high-risk pathological features.
K X LI ; Q B WU ; F Q ZHAO ; J L ZHANG ; S L LUO ; S D HU ; B WU ; H L LI ; G L LIN ; H Z QIU ; J Y LU ; L XU ; Z WANG ; X H DU ; L KANG ; X WANG ; Z Q WANG ; Q LIU ; Y XIAO
Chinese Journal of Surgery 2023;61(9):753-759
Objective: To examine a predictive model that incorporating high risk pathological factors for the prognosis of stage Ⅰ to Ⅲ colon cancer. Methods: This study retrospectively collected clinicopathological information and survival outcomes of stage Ⅰ~Ⅲ colon cancer patients who underwent curative surgery in 7 tertiary hospitals in China from January 1, 2016 to December 31, 2017. A total of 1 650 patients were enrolled, aged (M(IQR)) 62 (18) years (range: 14 to 100). There were 963 males and 687 females. The median follow-up period was 51 months. The Cox proportional hazardous regression model was utilized to select high-risk pathological factors, establish the nomogram and scoring system. The Bootstrap resampling method was utilized for internal validation of the model, the concordance index (C-index) was used to assess discrimination and calibration curves were presented to assess model calibration. The Kaplan-Meier method was used to plot survival curves after risk grouping, and Cox regression was used to compare disease-free survival between subgroups. Results: Age (HR=1.020, 95%CI: 1.008 to 1.033, P=0.001), T stage (T3:HR=1.995,95%CI:1.062 to 3.750,P=0.032;T4:HR=4.196, 95%CI: 2.188 to 8.045, P<0.01), N stage (N1: HR=1.834, 95%CI: 1.307 to 2.574, P<0.01; N2: HR=3.970, 95%CI: 2.724 to 5.787, P<0.01) and number of lymph nodes examined (≥36: HR=0.438, 95%CI: 0.242 to 0.790, P=0.006) were independently associated with disease-free survival. The C-index of the scoring model (model 1) based on age, T stage, N stage, and dichotomous variables of the lymph nodes examined (<12 and ≥12) was 0.723, and the C-index of the scoring model (model 2) based on age, T stage, N stage, and multi-categorical variables of the lymph nodes examined (<12, 12 to <24, 24 to <36, and ≥36) was 0.726. A scoring system was established based on age, T stage, N stage, and multi-categorical variables of lymph nodes examined, the 3-year DFS of the low-risk (≤1), middle-risk (2 to 4) and high-risk (≥5) group were 96.3% (n=711), 89.0% (n=626) and 71.4% (n=313), respectively. Statistically significant difference was observed among groups (P<0.01). Conclusions: The number of lymph nodes examined was an independent prognostic factor for disease-free survival after curative surgery in patients with stage Ⅰ to Ⅲ colon cancer. Incorporating the number of lymph nodes examined as a multi-categorical variable into the T and N staging system could improve prognostic predictive validity.
Male
;
Female
;
Humans
;
Prognosis
;
Neoplasm Staging
;
Retrospective Studies
;
Nomograms
;
Lymph Nodes/pathology*
;
Risk Factors
;
Colonic Neoplasms/surgery*
8.Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality
Thanh N. NGUYEN ; Muhammad M. QURESHI ; Piers KLEIN ; Hiroshi YAMAGAMI ; Mohamad ABDALKADER ; Robert MIKULIK ; Anvitha SATHYA ; Ossama Yassin MANSOUR ; Anna CZLONKOWSKA ; Hannah LO ; Thalia S. FIELD ; Andreas CHARIDIMOU ; Soma BANERJEE ; Shadi YAGHI ; James E. SIEGLER ; Petra SEDOVA ; Joseph KWAN ; Diana Aguiar DE SOUSA ; Jelle DEMEESTERE ; Violiza INOA ; Setareh Salehi OMRAN ; Liqun ZHANG ; Patrik MICHEL ; Davide STRAMBO ; João Pedro MARTO ; Raul G. NOGUEIRA ; ; Espen Saxhaug KRISTOFFERSEN ; Georgios TSIVGOULIS ; Virginia Pujol LEREIS ; Alice MA ; Christian ENZINGER ; Thomas GATTRINGER ; Aminur RAHMAN ; Thomas BONNET ; Noémie LIGOT ; Sylvie DE RAEDT ; Robin LEMMENS ; Peter VANACKER ; Fenne VANDERVORST ; Adriana Bastos CONFORTO ; Raquel C.T. HIDALGO ; Daissy Liliana MORA CUERVO ; Luciana DE OLIVEIRA NEVES ; Isabelle LAMEIRINHAS DA SILVA ; Rodrigo Targa MARTÍNS ; Letícia C. REBELLO ; Igor Bessa SANTIAGO ; Teodora SADELAROVA ; Rosen KALPACHKI ; Filip ALEXIEV ; Elena Adela CORA ; Michael E. KELLY ; Lissa PEELING ; Aleksandra PIKULA ; Hui-Sheng CHEN ; Yimin CHEN ; Shuiquan YANG ; Marina ROJE BEDEKOVIC ; Martin ČABAL ; Dusan TENORA ; Petr FIBRICH ; Pavel DUŠEK ; Helena HLAVÁČOVÁ ; Emanuela HRABANOVSKA ; Lubomír JURÁK ; Jana KADLČÍKOVÁ ; Igor KARPOWICZ ; Lukáš KLEČKA ; Martin KOVÁŘ ; Jiří NEUMANN ; Hana PALOUŠKOVÁ ; Martin REISER ; Vladimir ROHAN ; Libor ŠIMŮNEK ; Ondreij SKODA ; Miroslav ŠKORŇA ; Martin ŠRÁMEK ; Nicolas DRENCK ; Khalid SOBH ; Emilie LESAINE ; Candice SABBEN ; Peggy REINER ; Francois ROUANET ; Daniel STRBIAN ; Stefan BOSKAMP ; Joshua MBROH ; Simon NAGEL ; Michael ROSENKRANZ ; Sven POLI ; Götz THOMALLA ; Theodoros KARAPANAYIOTIDES ; Ioanna KOUTROULOU ; Odysseas KARGIOTIS ; Lina PALAIODIMOU ; José Dominguo BARRIENTOS GUERRA ; Vikram HUDED ; Shashank NAGENDRA ; Chintan PRAJAPATI ; P.N. SYLAJA ; Achmad Firdaus SANI ; Abdoreza GHOREISHI ; Mehdi FARHOUDI ; Elyar SADEGHI HOKMABADI ; Mazyar HASHEMILAR ; Sergiu Ionut SABETAY ; Fadi RAHAL ; Maurizio ACAMPA ; Alessandro ADAMI ; Marco LONGONI ; Raffaele ORNELLO ; Leonardo RENIERI ; Michele ROMOLI ; Simona SACCO ; Andrea SALMAGGI ; Davide SANGALLI ; Andrea ZINI ; Kenichiro SAKAI ; Hiroki FUKUDA ; Kyohei FUJITA ; Hirotoshi IMAMURA ; Miyake KOSUKE ; Manabu SAKAGUCHI ; Kazutaka SONODA ; Yuji MATSUMARU ; Nobuyuki OHARA ; Seigo SHINDO ; Yohei TAKENOBU ; Takeshi YOSHIMOTO ; Kazunori TOYODA ; Takeshi UWATOKO ; Nobuyuki SAKAI ; Nobuaki YAMAMOTO ; Ryoo YAMAMOTO ; Yukako YAZAWA ; Yuri SUGIURA ; Jang-Hyun BAEK ; Si Baek LEE ; Kwon-Duk SEO ; Sung-Il SOHN ; Jin Soo LEE ; Anita Ante ARSOVSKA ; Chan Yong CHIEH ; Wan Asyraf WAN ZAIDI ; Wan Nur Nafisah WAN YAHYA ; Fernando GONGORA-RIVERA ; Manuel MARTINEZ-MARINO ; Adrian INFANTE-VALENZUELA ; Diederik DIPPEL ; Dianne H.K. VAN DAM-NOLEN ; Teddy Y. WU ; Martin PUNTER ; Tajudeen Temitayo ADEBAYO ; Abiodun H. BELLO ; Taofiki Ajao SUNMONU ; Kolawole Wasiu WAHAB ; Antje SUNDSETH ; Amal M. AL HASHMI ; Saima AHMAD ; Umair RASHID ; Liliana RODRIGUEZ-KADOTA ; Miguel Ángel VENCES ; Patrick Matic YALUNG ; Jon Stewart Hao DY ; Waldemar BROLA ; Aleksander DĘBIEC ; Malgorzata DOROBEK ; Michal Adam KARLINSKI ; Beata M. LABUZ-ROSZAK ; Anetta LASEK-BAL ; Halina SIENKIEWICZ-JAROSZ ; Jacek STASZEWSKI ; Piotr SOBOLEWSKI ; Marcin WIĄCEK ; Justyna ZIELINSKA-TUREK ; André Pinho ARAÚJO ; Mariana ROCHA ; Pedro CASTRO ; Patricia FERREIRA ; Ana Paiva NUNES ; Luísa FONSECA ; Teresa PINHO E MELO ; Miguel RODRIGUES ; M Luis SILVA ; Bogdan CIOPLEIAS ; Adela DIMITRIADE ; Cristian FALUP-PECURARIU ; May Adel HAMID ; Narayanaswamy VENKETASUBRAMANIAN ; Georgi KRASTEV ; Jozef HARING ; Oscar AYO-MARTIN ; Francisco HERNANDEZ-FERNANDEZ ; Jordi BLASCO ; Alejandro RODRÍGUEZ-VÁZQUEZ ; Antonio CRUZ-CULEBRAS ; Francisco MONICHE ; Joan MONTANER ; Soledad PEREZ-SANCHEZ ; María Jesús GARCÍA SÁNCHEZ ; Marta GUILLÁN RODRÍGUEZ ; Gianmarco BERNAVA ; Manuel BOLOGNESE ; Emmanuel CARRERA ; Anchalee CHUROJANA ; Ozlem AYKAC ; Atilla Özcan ÖZDEMIR ; Arsida BAJRAMI ; Songul SENADIM ; Syed I. HUSSAIN ; Seby JOHN ; Kailash KRISHNAN ; Robert LENTHALL ; Kaiz S. ASIF ; Kristine BELOW ; Jose BILLER ; Michael CHEN ; Alex CHEBL ; Marco COLASURDO ; Alexandra CZAP ; Adam H. DE HAVENON ; Sushrut DHARMADHIKARI ; Clifford J. ESKEY ; Mudassir FAROOQUI ; Steven K. FESKE ; Nitin GOYAL ; Kasey B. GRIMMETT ; Amy K. GUZIK ; Diogo C. HAUSSEN ; Majesta HOVINGH ; Dinesh JILLELA ; Peter T. KAN ; Rakesh KHATRI ; Naim N. KHOURY ; Nicole L. KILEY ; Murali K. KOLIKONDA ; Stephanie LARA ; Grace LI ; Italo LINFANTE ; Aaron I. LOOCHTAN ; Carlos D. LOPEZ ; Sarah LYCAN ; Shailesh S. MALE ; Fadi NAHAB ; Laith MAALI ; Hesham E. MASOUD ; Jiangyong MIN ; Santiago ORGETA-GUTIERREZ ; Ghada A. MOHAMED ; Mahmoud MOHAMMADEN ; Krishna NALLEBALLE ; Yazan RADAIDEH ; Pankajavalli RAMAKRISHNAN ; Bliss RAYO-TARANTO ; Diana M. ROJAS-SOTO ; Sean RULAND ; Alexis N. SIMPKINS ; Sunil A. SHETH ; Amy K. STAROSCIAK ; Nicholas E. TARLOV ; Robert A. TAYLOR ; Barbara VOETSCH ; Linda ZHANG ; Hai Quang DUONG ; Viet-Phuong DAO ; Huynh Vu LE ; Thong Nhu PHAM ; Mai Duy TON ; Anh Duc TRAN ; Osama O. ZAIDAT ; Paolo MACHI ; Elisabeth DIRREN ; Claudio RODRÍGUEZ FERNÁNDEZ ; Jorge ESCARTÍN LÓPEZ ; Jose Carlos FERNÁNDEZ FERRO ; Niloofar MOHAMMADZADEH ; Neil C. SURYADEVARA, MD ; Beatriz DE LA CRUZ FERNÁNDEZ ; Filipe BESSA ; Nina JANCAR ; Megan BRADY ; Dawn SCOZZARI
Journal of Stroke 2022;24(2):256-265
Background:
and Purpose Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year.
Methods:
We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020).
Results:
There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths.
Conclusions
During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.
9.The Practice of Gastrointestinal Motility Laboratory During COVID-19 Pandemic: Position Statements of the Asian Neurogastroenterology and Motility Association (ANMA-GML-COVID-19 Position Statements)
Kewin T H SIAH ; M Masudur RAHMAN ; Andrew M L ONG ; Alex Y S SOH ; Yeong Yeh LEE ; Yinglian XIAO ; Sanjeev SACHDEVA ; Kee Wook JUNG ; Yen-Po WANG ; Tadayuki OSHIMA ; Tanisa PATCHARATRAKUL ; Ping-Huei TSENG ; Omesh GOYAL ; Junxiong PANG ; Christopher K C LAI ; Jung Ho PARK ; Sanjiv MAHADEVA ; Yu Kyung CHO ; Justin C Y WU ; Uday C GHOSHAL ; Hiroto MIWA
Journal of Neurogastroenterology and Motility 2020;26(3):299-310
During the Coronavirus Disease 2019 (COVID-19) pandemic, practices of gastrointestinal procedures within the digestive tract require special precautions due to the risk of contraction of severe acute respiratoy syndrome coronavirus-2 (SARS-CoV-2) infection. Many procedures in the gastrointestinal motility laboratory may be considered moderate to high-risk for viral transmission. Healthcare staff working in gastrointestinal motility laboratories are frequently exposed to splashes, air droplets, mucus, or saliva during the procedures. Moreover, some are aerosol-generating and thus have a high risk of viral transmission. There are multiple guidelines on the practices of gastrointestinal endoscopy during this pandemic. However, such guidelines are still lacking and urgently needed for the practice of gastrointestinal motility laboratories. Hence, the Asian Neurogastroenterology and Motility Association had organized a group of gastrointestinal motility experts and infectious disease specialists to produce a position statement paper based-on current available evidence and consensus opinion with aims to provide a clear guidance on the practices of gastrointestinal motility laboratories during the COVID-19 pandemic. This guideline covers a wide range of topics on gastrointestinal motility activities from scheduling a motility test, the precautions at different steps of the procedure to disinfection for the safety and well-being of the patients and the healthcare workers. These practices may vary in different countries depending on the stages of the pandemic, local or institutional policy, and the availability of healthcare resources. This guideline is useful when the transmission rate of SARS-CoV-2 is high. It may change rapidly depending on the situation of the epidemic and when new evidence becomes available.
10.DPHL:A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery
Zhu TIANSHENG ; Zhu YI ; Xuan YUE ; Gao HUANHUAN ; Cai XUE ; Piersma R. SANDER ; Pham V. THANG ; Schelfhorst TIM ; Haas R.G.D. RICHARD ; Bijnsdorp V. IRENE ; Sun RUI ; Yue LIANG ; Ruan GUAN ; Zhang QIUSHI ; Hu MO ; Zhou YUE ; Winan J. Van Houdt ; Tessa Y.S. Le Large ; Cloos JACQUELINE ; Wojtuszkiewicz ANNA ; Koppers-Lalic DANIJELA ; B(o)ttger FRANZISKA ; Scheepbouwer CHANTAL ; Brakenhoff H. RUUD ; Geert J.L.H. van Leenders ; Ijzermans N.M. JAN ; Martens W.M. JOHN ; Steenbergen D.M. RENSKE ; Grieken C. NICOLE ; Selvarajan SATHIYAMOORTHY ; Mantoo SANGEETA ; Lee S. SZE ; Yeow J.Y. SERENE ; Alkaff M.F. SYED ; Xiang NAN ; Sun YAOTING ; Yi XIAO ; Dai SHAOZHENG ; Liu WEI ; Lu TIAN ; Wu ZHICHENG ; Liang XIAO ; Wang MAN ; Shao YINGKUAN ; Zheng XI ; Xu KAILUN ; Yang QIN ; Meng YIFAN ; Lu CONG ; Zhu JIANG ; Zheng JIN'E ; Wang BO ; Lou SAI ; Dai YIBEI ; Xu CHAO ; Yu CHENHUAN ; Ying HUAZHONG ; Lim K. TONY ; Wu JIANMIN ; Gao XIAOFEI ; Luan ZHONGZHI ; Teng XIAODONG ; Wu PENG ; Huang SHI'ANG ; Tao ZHIHUA ; Iyer G. NARAYANAN ; Zhou SHUIGENG ; Shao WENGUANG ; Lam HENRY ; Ma DING ; Ji JIAFU ; Kon L. OI ; Zheng SHU ; Aebersold RUEDI ; Jimenez R. CONNIE ; Guo TIANNAN
Genomics, Proteomics & Bioinformatics 2020;18(2):104-119
To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipe-line and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to gen-erate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.

Result Analysis
Print
Save
E-mail