1.2021 Asian Pacific Society of Cardiology Consensus Recommendations on the use of P2Y12 receptor antagonists in the Asia-Pacific Region: Special populations.
W E I C H I E H T A N TAN ; P C H E W CHEW ; L A M T S U I TSUI ; T A N TAN ; D U P L Y A K O V DUPLYAKOV ; H A M M O U D E H HAMMOUDEH ; Bo ZHANG ; Yi LI ; Kai XU ; J O N G ONG ; Doni FIRMAN ; G A M R A GAMRA ; A L M A H M E E D ALMAHMEED ; D A L A L DALAL ; T A N TAN ; S T E G STEG ; N N G U Y E N NGUYEN ; A K O AKO ; A L S U W A I D I SUWAIDI ; C H A N CHAN ; S O B H Y SOBHY ; S H E H A B SHEHAB ; B U D D H A R I BUDDHARI ; Zu Lv WANG ; Y E A N Y I P F O N G FONG ; K A R A D A G KARADAG ; K I M KIM ; B A B E R BABER ; T A N G C H I N CHIN ; Ya Ling HAN
Chinese Journal of Cardiology 2023;51(1):19-31
2.A real-world study of the effects of endocrine therapy on liver function in breast cancer.
Yue Chong LI ; Zi Xin DENG ; Ying Jiao WANG ; Tao XU ; Qiang SUN ; S J SHEN
Chinese Journal of Surgery 2023;61(2):107-113
Objective: To compare the effect of different endocrine therapy drugs on liver function in patients with early breast cancer. Methods: A retrospective cohort study was conducted to include 4 318 patients with early breast cancer who received adjuvant endocrine therapy in Department of Breast Surgery, Peking Union Medical College Hospital from January 1, 2013 to December 31, 2021. All the patients were female, aged (51.2±11.3) years (range: 20 to 87 years), including 1 182 patients in the anastrozole group, 592 patients in the letrozole group, 332 patients in the exemestane group, and 2 212 patients in the toremifene group. The mixed effect model was used to analyze and compare the liver function levels of patients at baseline, 6, 12, 18, 24, 36, 48, 60 months of medication, and 1 year after drug withdrawal among the three aromatase inhibitors (anastrozole, letrozole, exemestane) and toremifene. Results: ALT and AST of the 4 groups were significantly higher than the baseline level at 6 months (all P<0.01), and there were no significant differences in total bilirubin, direct bilirubin and AST levels among all groups one year after drug withdrawal (P: 0.538, 0.718, 0.061, respectively). There was no significant difference in the effect of all groups on AST levels (F=2.474, P=0.061), and in the effect of three aromatase inhibitors (anastrozole, letrozole, and exemestane) on ALT levels (anastrozole vs. letrozole, P=0.182; anastrozole vs. exemestane, P=0.535; letrozole vs. exemestane, P=0.862). Anastrozole and letrozole had significantly higher effects on ALT levels than toremifene (P<0.01, P=0.009). The proportion of abnormal liver function in each group increased significantly at 6 months compared with baseline, and then the proportion showed a decreasing trend over time. Conclusions: Three aromatase inhibitors (anastrozole, letrozole, and exemestane) and toremifene can significantly increase the level of ALT and AST in patients with breast cancer, and the levels can gradually recover to the baseline after 1 year of drug withdrawal. The effect of non-steroidal aromatase inhibitors (anastrozole, letrozole) on ALT levels is greater than toremifene.
Female
;
Humans
;
Anastrozole
;
Aromatase Inhibitors/therapeutic use*
;
Bilirubin
;
Breast Neoplasms/drug therapy*
;
Letrozole
;
Liver
;
Retrospective Studies
;
Toremifene
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
6.Application and evaluation of artificial intelligence TPS-assisted cytologic screening system in urine exfoliative cytology.
L ZHU ; M L JIN ; S R HE ; H M XU ; J W HUANG ; L F KONG ; D H LI ; J X HU ; X Y WANG ; Y W JIN ; H HE ; X Y WANG ; Y Y SONG ; X Q WANG ; Z M YANG ; A X HU
Chinese Journal of Pathology 2023;52(12):1223-1229
Objective: To explore the application of manual screening collaborated with the Artificial Intelligence TPS-Assisted Cytologic Screening System in urinary exfoliative cytology and its clinical values. Methods: A total of 3 033 urine exfoliated cytology samples were collected at the Henan People's Hospital, Capital Medical University, Beijing, China. Liquid-based thin-layer cytology was prepared. The slides were manually read under the microscope and digitally presented using a scanner. The intelligent identification and analysis were carried out using an artificial intelligence TPS assisted screening system. The Paris Report Classification System of Urinary Exfoliated Cytology 2022 was used as the evaluation standard. Atypical urothelial cells and even higher grade lesions were considered as positive when evaluating the recognition sensitivity, specificity, and diagnostic accuracy of artificial intelligence-assisted screening systems and human-machine collaborative cytologic screening methods in urine exfoliative cytology. Among the collected cases, there were also 1 100 pathological tissue controls. Results: The accuracy, sensitivity and specificity of the AI-assisted cytologic screening system were 77.18%, 90.79% and 69.49%; those of human-machine coordination method were 92.89%, 99.63% and 89.09%, respectively. Compared with the histopathological results, the accuracy, sensitivity and specificity of manual reading were 79.82%, 74.20% and 95.80%, respectively, while those of AI-assisted cytologic screening system were 93.45%, 93.73% and 92.66%, respectively. The accuracy, sensitivity and specificity of human-machine coordination method were 95.36%, 95.21% and 95.80%, respectively. Both cytological and histological controls showed that human-machine coordination review method had higher diagnostic accuracy and sensitivity, and lower false negative rates. Conclusions: The artificial intelligence TPS assisted cytologic screening system has achieved acceptable accuracy in urine exfoliation cytologic screening. The combination of manual screening and artificial intelligence TPS assisted screening system can effectively improve the sensitivity and accuracy of cytologic screening and reduce the risk of misdiagnosis.
Humans
;
Artificial Intelligence
;
Urothelium/pathology*
;
Cytodiagnosis
;
Epithelial Cells/pathology*
;
Sensitivity and Specificity
;
Urologic Neoplasms/urine*
7.Development and validation of a prognostic prediction model for patients with stage Ⅰ to Ⅲ colon cancer incorporating high-risk pathological features.
K X LI ; Q B WU ; F Q ZHAO ; J L ZHANG ; S L LUO ; S D HU ; B WU ; H L LI ; G L LIN ; H Z QIU ; J Y LU ; L XU ; Z WANG ; X H DU ; L KANG ; X WANG ; Z Q WANG ; Q LIU ; Y XIAO
Chinese Journal of Surgery 2023;61(9):753-759
Objective: To examine a predictive model that incorporating high risk pathological factors for the prognosis of stage Ⅰ to Ⅲ colon cancer. Methods: This study retrospectively collected clinicopathological information and survival outcomes of stage Ⅰ~Ⅲ colon cancer patients who underwent curative surgery in 7 tertiary hospitals in China from January 1, 2016 to December 31, 2017. A total of 1 650 patients were enrolled, aged (M(IQR)) 62 (18) years (range: 14 to 100). There were 963 males and 687 females. The median follow-up period was 51 months. The Cox proportional hazardous regression model was utilized to select high-risk pathological factors, establish the nomogram and scoring system. The Bootstrap resampling method was utilized for internal validation of the model, the concordance index (C-index) was used to assess discrimination and calibration curves were presented to assess model calibration. The Kaplan-Meier method was used to plot survival curves after risk grouping, and Cox regression was used to compare disease-free survival between subgroups. Results: Age (HR=1.020, 95%CI: 1.008 to 1.033, P=0.001), T stage (T3:HR=1.995,95%CI:1.062 to 3.750,P=0.032;T4:HR=4.196, 95%CI: 2.188 to 8.045, P<0.01), N stage (N1: HR=1.834, 95%CI: 1.307 to 2.574, P<0.01; N2: HR=3.970, 95%CI: 2.724 to 5.787, P<0.01) and number of lymph nodes examined (≥36: HR=0.438, 95%CI: 0.242 to 0.790, P=0.006) were independently associated with disease-free survival. The C-index of the scoring model (model 1) based on age, T stage, N stage, and dichotomous variables of the lymph nodes examined (<12 and ≥12) was 0.723, and the C-index of the scoring model (model 2) based on age, T stage, N stage, and multi-categorical variables of the lymph nodes examined (<12, 12 to <24, 24 to <36, and ≥36) was 0.726. A scoring system was established based on age, T stage, N stage, and multi-categorical variables of lymph nodes examined, the 3-year DFS of the low-risk (≤1), middle-risk (2 to 4) and high-risk (≥5) group were 96.3% (n=711), 89.0% (n=626) and 71.4% (n=313), respectively. Statistically significant difference was observed among groups (P<0.01). Conclusions: The number of lymph nodes examined was an independent prognostic factor for disease-free survival after curative surgery in patients with stage Ⅰ to Ⅲ colon cancer. Incorporating the number of lymph nodes examined as a multi-categorical variable into the T and N staging system could improve prognostic predictive validity.
Male
;
Female
;
Humans
;
Prognosis
;
Neoplasm Staging
;
Retrospective Studies
;
Nomograms
;
Lymph Nodes/pathology*
;
Risk Factors
;
Colonic Neoplasms/surgery*
8.Distribution characteristics of emerging and reemerging Oncomelania hupensis in China from 2015 to 2021.
F YANG ; T FENG ; J HE ; L ZHANG ; J XU ; C CAO ; S LI
Chinese Journal of Schistosomiasis Control 2023;35(5):437-443
OBJECTIVE:
To analyze the distribution characteristics of emerging and reemerging Oncomelania hupensis snails after the criteria for transmission control of schistosomiasis were achieved in China, so as to provide insights into assessment of schistosomiasis transmission risk and formulation of snail control strategies during the elimination phase.
METHODS:
O. hupensis survey data in China from 2015 to 2021 were collected from the National Schistosomiasis Pevention and Control Information Management System, and the distribution characteristics of emerging and reemerging O. hupensis snails were descriptively analyzed.
RESULTS:
Emerging and reemerging O. hupensis snails were identified in China each year from 2015 to 2021, with relatively larger areas with emerging and reemerging O. hupensis snail habitats in 2016 and 2021, and relatively higher numbers of counties (districts) where emerging and reemerging O. hupensis snails were detected in 2016 and 2021. A total of 4 586.30 hm2 of emerging O. hupensis snail habitats were found in 10 schistosomiasis-endemic provinces of China (except Fujian and Yunnan Provinces) from 2015 to 2021, with 96.80% in Anhui, Hunan and Hubei provinces, where marshland and lake endemic foci were predominant. A total of 21 023.90 hm2 of reemerging O. hupensis snail habitats were found in 12 schistosomiasis-endemic provinces of China from 2015 to 2021, with 97.67% in six provinces of Hubei, Sichuan, Jiangxi, Jiangsu, Yunnan and Anhui, where marshland and lake and hilly endemic regions were predominant. Emerging snail habitats were found in 15.08% of all schistosomiasisendemic counties (districts) in China from 2015 to 2021, and 78.75% of all emerging snail habitats were identified in 11 schistosomiasis-endemic counties (districts), with the largest area of emerging snail habitats found in Lixian County, Hunan Province (645.00 hm2). Reemerging snail habitats were found in 47.67% of all schistosomiasis-endemic counties (districts) in China from 2015 to 2021, and 43.29% of all reemerging snail habitats were identified in 11 schistosomiasis-endemic counties (districts), with the largest area of reemerging snail habitats found in Weishan Li and Hui Autonomous County of Hunan Province (1 579.70 hm2).
CONCLUSIONS
Emerging and reemerging O. hupensis snails were identified in China each year from 2015 to 2021, with much larger areas of reemerging snail habitats than emerging snail habitats, and larger numbers of schistosomiasis-endemic provinces and counties (districts) with reemerging snails were found that those of provinces and counties (districts) with emerging snails. Specific snail control interventions are required tailored to the causes of emerging and reemerging snail habitats. Both emergence and reemergence of O. hupensis snails should be paid attention to in marshland and lake endemic areas, and Guangxi Zhuang Autonomous Region, Shanghai Municipality and Zhejiang Province where schistosomiasis had been eliminated, and reemergence of O. hupensis snails should be given a high priority in hilly areas. In addition, monitoring of O. hupensis snails should be reinforced in snail-free areas after flooding.
Humans
;
China/epidemiology*
;
Schistosomiasis/prevention & control*
;
Cities
;
Ecosystem
;
Lakes
9.Molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against Oncomelania hupensis in hilly regions.
J HE ; Y ZHANG ; Z BAO ; S GUO ; C CAO ; C DU ; J CHA ; J SUN ; Y DONG ; J XU ; S LI ; X ZHOU
Chinese Journal of Schistosomiasis Control 2023;35(5):451-457
OBJECTIVE:
To establish a snail control approach for spraying chemicals with drones against Oncomelania hupensis in complex snail habitats in hilly regions, and to evaluate its molluscicidal effect.
METHODS:
The protocol for evaluating the activity of spraying chemical molluscicides with drones against O. hupensis snails was formulated based on expert consultation and literature review. In August 2022, a pretest was conducted in a hillside field environment (12 000 m2) north of Dafengji Village, Dacang Township, Weishan County, Yunnan Province, which was assigned into four groups, of no less than 3 000 m2 in each group. In Group A, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with drones at a dose of 40 g/m2, and in Group B, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with drones at a dose of 40 g/m2, while in Group C, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with knapsack sprayers at a dose of 40 g/m2, and in Group D, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with knapsack sprayers at a dose of 40 g/m2. Then, each group was equally divided into six sections according to land area, with Section 1 for baseline surveys and sections 2 to 6 for snail surveys after chemical treatment. Snail surveys were conducted prior to chemical treatment and 1, 3, 5, 7 days post-treatment, and the mortality and corrected mortality of snails, density of living snails and costs of molluscicidal treatment were calculated in each group.
RESULTS:
The mortality and corrected mortality of snails were 69.49%, 69.09%, 53.57% and 83.48%, and 68.58%, 68.17%, 52.19% and 82.99% in groups A, B, C and D 14 days post-treatment, and the density of living snails reduced by 58.40%, 63.94%, 68.91% and 83.25% 14 days post-treatment relative to pre-treatment in four groups, respectively. The median concentrations of chemical molluscicides were 37.08, 35.42, 42.50 g/m2 and 56.25 g/m2 in groups A, B, C and D, and the gross costs of chemical treatment were 0.93, 1.50, 0.46 Yuan per m2 and 1.03 Yuan per m2 in groups A, B, C and D, respectively.
CONCLUSIONS
The molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against O. hupensis snails is superior to manual chemical treatment without environmental cleaning, and chemical treatment with drones and manual chemical treatment show comparable molluscicidal effects following environmental cleaning in hilly regions. The cost of chemical treatment with drones is slightly higher than manual chemical treatment regardless of environmental cleaning. Spraying 5% niclosamide ethanolamine salt granules with drones is recommended in complex settings with difficulty in environmental cleaning to improve the molluscicidal activity and efficiency against O. hupensis snails.
Niclosamide/pharmacology*
;
Ethanolamine/pharmacology*
;
Unmanned Aerial Devices
;
China
;
Molluscacides/pharmacology*
;
Ethanolamines

Result Analysis
Print
Save
E-mail