1.Oral administration of TRPV4 inhibitor improves atrial calcium handling abnormalities in sterile pericarditis rats.
Jie LIAO ; Shuai-Tao YANG ; Kai LU ; Yang LU ; Yu-Wei WU ; Yi-Mei DU
Acta Physiologica Sinica 2022;74(2):188-200
		                        		
		                        			
		                        			Atrial Ca2+ handling abnormalities, mainly involving the dysfunction of ryanodine receptor (RyR) and sarcoplasmic reticulum Ca2+-ATPase (SERCA), play a role in the pathogenesis of atrial fibrillation (AF). Previously, we found that the expression and function of transient receptor potential vanilloid subtype 4 (TRPV4) are upregulated in a sterile pericarditis (SP) rat model of AF, and oral administration of TRPV4 inhibitor GSK2193874 alleviates AF in this animal model. The aim of this study was to investigate whether oral administration of GSK2193874 could alleviate atrial Ca2+ handling abnormalities in SP rats. A SP rat model of AF was established by daubing sterile talcum powder on both atria of Sprague-Dawley (SD) rats after a pericardiotomy, to simulate the pathogenesis of postoperative atrial fibrillation (POAF). On the 3rd postoperative day, Ca2+ signals of atria were collected in isolated perfused hearts by optical mapping. Ca2+ transient duration (CaD), alternan, and the recovery properties of Ca2+ transient (CaT) were quantified and analyzed. GSK2193874 treatment reversed the abnormal prolongation of time to peak (determined mainly by RyR activity) and CaD (determined mainly by SERCA activity), as well as the regional heterogeneity of CaD in SP rats. Furthermore, GSK2193874 treatment relieved alternan in SP rats, and reduced its incidence of discordant alternan (DIS-ALT). More importantly, GSK2193874 treatment prevented the reduction of the S2/S1 CaT ratio (determined mainly by RyR refractoriness) in SP rats, and decreased its regional heterogeneity. Taken together, oral administration of TRPV4 inhibitor alleviates Ca2+ handling abnormalities in SP rats primarily by blocking the TRPV4-Ca2+-RyR pathway, and thus exerts therapeutic effect on POAF.
		                        		
		                        		
		                        		
		                        			Administration, Oral
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Atrial Fibrillation/etiology*
		                        			;
		                        		
		                        			Calcium/metabolism*
		                        			;
		                        		
		                        			Myocytes, Cardiac/metabolism*
		                        			;
		                        		
		                        			Pericarditis/pathology*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Ryanodine Receptor Calcium Release Channel/pharmacology*
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum/pathology*
		                        			;
		                        		
		                        			TRPV Cation Channels
		                        			
		                        		
		                        	
2.Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta.
Yu-fang CHEN ; Chen WANG ; Rui ZHANG ; Huan WANG ; Rong MA ; Si JIN ; Ji-zhou XIANG ; Qiang TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):8-13
		                        		
		                        			
		                        			The present study attempted to test a novel hypothesis that Ca(2+) sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus (10 µmol/L) increased the frequency of Ca(2+) sparks, which could be reversed by ryanodine (10 µmol/L). Electrophysiological experiments revealed that tacrolimus (10 µmol/L) increased the large-conductance Ca(2+)-activated K(+) currents (BKCa) in rat aortic vascular smooth muscle cells (AVSMCs), which could be blocked by ryanodine (10 µmol/L). Furthermore, tacrolimus (10 and 50 µmol/L) reduced the contractile force induced by norepinephrine (NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin (100 nmol/L) and ryanodine (10 µmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca(2+) sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Aorta
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Large-Conductance Calcium-Activated Potassium Channels
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Norepinephrine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Ryanodine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tacrolimus
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Vasoconstriction
		                        			
		                        		
		                        	
3.Effect of carvedilol and Radix astragali on ryanodine receptor in heart failure in mice.
Rong LI ; Qin ZHANG ; Qi-jian YI
Chinese Journal of Pediatrics 2011;49(6):433-438
OBJECTIVETo explore change of ryanodine receptor (RyR) in junior mouse with heart failure (HF) and the effect of β-adrenoreceptor blocker and Radix astragali on RyR in HF in this experiment.
METHODThe animal model of congestive heart failure was established by coarctation of abdominal aorta. Five weeks old mice were randomly divided into 4 groups: (1) HF group without treatment (n = 30); (2) HF group treated with carvedilol (n = 30); (3) HF group treated with carvedilol and Radix astragali(n = 30); (4) Sham-operated group (n = 30). Carvedilol and Radix astragali were administered through direct gastric gavage. After 4 weeks of treatment the high frequency ultrasound was performed. Myocardial sarcoplasmic reticulum (SR) was fractionated with ultra centrifugation. The time courses of Ca(2+) uptake and leak were determined by fluorescent spectrophotometry. The levels of expression of RyR2 in the 4 groups were detected by semi-quantitative reverse transcription-polymerase chain reaction.
RESULTCompared with the sham-operated group, left ventricular diastolic dimension (LVEDD) (P < 0.05), left ventricular systolic dimension (LVESD), interventricular septal thickness at end-diastole (IVSTd), interventricular septal thickness at end-systole (IVSTs), left ventricular posterior wall thickness at end-diastole (LVPWTd), and left ventricular posterior wall thickness at endsystole (LVPWTs) were all significantly increased (P < 0.01), ejection fraction (EF)(%) (HF group without treatment 51.60 ± 1.15, HF treated with carvedilol 72.06 ± 1.39, HF treated with carvedilol and Radix astragali 79.06 ± 1.09, sham-operated group 85.86 ± 1.45) and fractional shortening (FS) (HF group without treatment 44.55 ± 1.20, HF treated with carvedilol 44.55 ± 1.20, HF treated with carvedilol and Radix astragali 53.58 ± 1.30, sham-operated group 59.03 ± 1.67) were decreased (P < 0.01) in HF group without treatment. LVEDD (P < 0.05), LVESD, IVSTd, IVSTs, LVPWTd and LVPWTs were all significantly decreased (P < 0.01), EF and FS were increased (P < 0.01) in the cases with HF treated with carvedilol and carvedilol and Radix astragali when compared with HF group without treatment. EF and FS were much more increased in the group treated with carvedilol and Radix astragali than in those treated with carvedilol (P < 0.05). After adding thapsigargin to the buffer including SR of the four groups, there were fewer Ca(2+) leak (%) in sham-operated group (11.5 ± 4.3), HF group treated with carvedilol (15.6 ± 5.8) and treated with carvedilol and Radix astragali (13.6 ± 4.8) than that of HF group without treatment (65.6 ± 6.2) (P < 0.01), while after adding FK506 and thapsigargin together to the buffer including SR of four groups, there were marked Ca(2+) leak in sham-operated group (60.6 ± 7.8), HF group treated with carvedilol (66.2 ± 4.5)and those treated with carvedilol and Radix astragali (70.2 ± 5.5, P < 0.01). However, there was no additional increase in Ca(2+) leak in HF group (67.3 ± 7.5) compared with that of the group where only thapsigargin was added (P > 0.05). The levels of expression of RyR2 were significantly decreased in HF group and increased in the group treated with carvedilol and the group treated with carvedilol and Radix astragali.
CONCLUSIONThere was more cardiac Ca(2+) leak and the expression of RyR2 mRNA decreased in HF. Carvedilol and Radix astragali can increase expression of RyR2 mRNA and inhibit Ca(2+) leak by restoring the binding of FKBP12.6 back to RyR in HF to improve cardiac function and prevent left ventricle from remodeling.
Adrenergic beta-Antagonists ; pharmacology ; Animals ; Astragalus Plant ; Carbazoles ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Heart Failure ; metabolism ; Male ; Propanolamines ; pharmacology ; Rats ; Rats, Wistar ; Ryanodine Receptor Calcium Release Channel ; drug effects ; metabolism
4.Effect of carvedilol and perindopril on Ca(2+) pump activity and Ca(2+)-release channel density in myocardial sarcoplasmic reticulum in rats with chronic heart failure following myocardial infarction.
Zhao-Hua GENG ; Chun-Yan LIU ; You-Hua PENG ; Long-Gui LI ; Xiao-Hui ZHAO ; Bin CUI ; Shi-Yong YU
Journal of Southern Medical University 2009;29(7):1461-1464
OBJECTIVETo study the effects of carvedilol combined with perindopril on Ca(2+) pump activity and the density of Ca(2+)-release channel ryanodine receptor (RyR2) in the myocardial sarcoplasmic reticulum (SR) in rats with chronic heart failure caused by myocardial infarction.
METHODSRat models of chronic heart failure established by left coronary artery ligation were divided into different groups and treated with carvedilol (6 mg.kg(-1).d(-1)), perindopril (4 mg.kg(-1).d(-1)), terazosin (2 mg.kg(-1).d(-1)), or the combination of carvedilol (6 mg.kg(-1).d(-1)) and perindopril (4 mg.kg(-1).d(-1)) for 9 weeks. Another 12 rats with sham operation served as the sham-operated group. The hemodynamic parameters, activity of SR Ca(2+) pump, and RyR2 density were determined.
RESULTSCompared with shame-operated group, the rats with chronic heart failure showed significantly increased left ventricular end-diastolic pressure (LVEDP) (P<0.01) and decreased +dP/dtmax, -dp/dtmax, activity of SR Ca(2+) pump and density of RyR2 (P<0.01). Both monotherapies with carvedilol and perindopril attenuated the increment of LVEDP, and significantly increased +dp/dtmax, -dp/dtmax, activity of SR Ca(2+) pump and density of RyR2 (P<0.01). Combined treatment even further enhanced the therapeutic effects, whereas terazosin produced no obvious effect. The activity of SR Ca(2+) pump was strongly correlated to +dp/dtmax and -dp/dtmax (r=0.596 and 0.684, respectively, P<0.01).
CONCLUSIONProlonged treatment with beta-blocker carvedilol in combination with ACE inhibitor perindopril may improve the hemodynamic parameters, enhance Ca(2+) pump activity and increase the density of RyR2 of myocardial SR more effectively than either monotherapy in preventing and treating chronic heart failure following myocardial infarction.
Animals ; Calcium ; metabolism ; Carbazoles ; pharmacology ; therapeutic use ; Drug Therapy, Combination ; Heart Failure ; drug therapy ; etiology ; metabolism ; Male ; Myocardial Infarction ; complications ; metabolism ; Perindopril ; pharmacology ; therapeutic use ; Propanolamines ; pharmacology ; therapeutic use ; Rats ; Rats, Wistar ; Ryanodine Receptor Calcium Release Channel ; drug effects ; Sarcoplasmic Reticulum ; drug effects ; metabolism
5.Androgen correlates with expressions of ryanodine receptor 1 and voltage-gated calcium channel 1.3 in rat corpus cavernosum smooth muscle.
Hua LUO ; Hai-fan YANG ; Rui JIANG
National Journal of Andrology 2009;15(10):895-900
OBJECTIVETo study the expressions of ryanodine receptor 1 (RyR1) and voltage-gated calcium channel 1.3 (CaV1.3) in the corpus cavernosum smooth muscle of castrated rats and to investigate their role in androgen deficiency-related erectile dysfunction.
METHODSForty 8-week-old SD rats were equally randomized into Groups A (2-week sham-operation), B (4-week sham-operation), C (2-week castration), and D (4-week castration). After surgery, the levels of serum testosterone in different groups of rats were determined, and the expressions of RyR1 and CaV1.3 in the corpus cavernosum were detected by immunohistochemical staining and RT-PCR.
RESULTSThe levels of serum testosterone were significantly decreased in Groups C ([15.97 +/- 5.67] nmol/L) and D ([2.03 +/- 1.57] nmol/L) as compared with A ([90.54 +/- 20.13] nmol/L) and B ([120.35 +/- 30.32] nmol/L) (P < 0.05). RyR1 and CaV1.3 expressed in all the groups. RyR1 mRNA, CaV1.3 mRNA and their proteins were remarkably reduced in Groups C (0.51 +/- 0.24, 0.50 +/- 0.12, 120.36 +/- 25.78, 103.37 +/- 39.52, respectively) and D (0.33 +/- 0.15, 0.32 +/- 0.07, 67.39 +/- 30.54, 67.56 +/- 20.12, respectively) in comparison with A (1.53 +/- 0.25, 1.33 +/- 0.05, 300.96 +/- 135.12, 298.68 +/- 126.35, respectively) and B (1.37 +/- 0.23, 1.25 +/- 0.03, 330.38 +/- 128.59, 327.35 +/- 117.37, respectively) (P < 0.05). The androgen level was positively correlated with the expressions of RyR1 and CaV1.3.
CONCLUSIONAndrogen can regulate erectile function via RyR1 and CaV1.3.
Androgens ; pharmacology ; Animals ; Calcium Channels ; metabolism ; Male ; Muscle, Smooth ; drug effects ; metabolism ; Penis ; drug effects ; metabolism ; Rats ; Rats, Sprague-Dawley ; Ryanodine Receptor Calcium Release Channel ; metabolism
6.Initial bradykinin triggers calcium-induced calcium release in C6 glioma cells and its significance.
Neuroscience Bulletin 2009;25(1):21-26
OBJECTIVETo investigate the underlying mechanism for the selective modulation of the permeability of blood-tumor barrier (BTB) by small dose of bradykinin (BK).
METHODSC6 glioma cells were treated with BK, and changes of intracellular nitric oxide (NO) and intracellular calcium level were measured with fluorescent spectrophotometer.
RESULTSThe initial application of BK easily triggered extracellular calcium influx, which resulted in intracellular calcium store release in C6 glioma cells. The above mechanism was also named ryanodine mediated calcium induced calcium release (CICR). We also detected a long-lasting intracellular NO elevation in C6 glioma cells upon BK treatment. Further study showed that ryanodine mediated CICR contributed greatly to the secondary NO elevation induced by BK treatment.
CONCLUSIONThese results suggested that BK triggered CICR in C6 glioma cells and the associated NO generation might be the underlying mechanism for the selective modulation of BTB permeability by BK.
Animals ; Bradykinin ; pharmacology ; Calcium ; metabolism ; Cell Line, Tumor ; Glioma ; pathology ; Intracellular Fluid ; drug effects ; Nitric Oxide ; metabolism ; Rats ; Ryanodine ; pharmacology ; Spectrometry, Fluorescence ; methods ; Time Factors
7.ATP and ACh induced CICR in outer hair cells of the guinea pig cochlea: study of confocal microscopy.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2009;23(7):316-321
		                        		
		                        			OBJECTIVE:
		                        			Effects of ATP and acetylcholine (ACh) on intracellular Ca2+ concentrations ([Ca2+]i) and possible mechanism of Ca2+-induced Ca2+ release (CICR) of the isolated outer hair cells (OHCs) in the guinea pig cochlea were studied with confocal microscopy.
		                        		
		                        			METHOD:
		                        			OHCs were isolated from guinea pig cochlea by enzymatic and mechanical methods. The effects of ATP, ACh, Ryanodine + ATP (or ACh) and Thapsigargin + ATP (or ACh) in the presence or absence of extracellular Ca2+ on [Ca2+]i in OHCs were examined by confocal microscopy.
		                        		
		                        			RESULT:
		                        			In the presence of ATP, Ryanodine + ATP, Thapsigargin + ATP, ACh, Ryanodine + ACh and Thapsigargin + ACh increased [Ca2+]i and evoked an evident wave, respectively, the relative magnitude of fluorescence were 1.60 +/- 0.01(ATP), 1.644 +/- 0.005 (Ryanodine + ATP), 1.491 +/- 0.005 (Thapsigargin + ATP), 1.43 +/- 0.01 (ACh), 1.58 +/- 0.02 (Ryanodine + ACh), 1.398 +/- 0.003 (Thapsigargin + ACh) in OHCs in the presence of extracellular Ca2+ respectively. In the absence of extracellular Ca2+, ATP and Ryanodine + ATP induced a gradual and small [Ca2+]i wave, the relative magnitude of fluorescence were 1.341 +/- 0.006 and 1.386 +/- 0.008, however, ACh, Ryanodine + ACh, Thapsigargin + ACh and Thapsigargin + ATP can not induce wave but a gradual [Ca2+]i elevation. ACh can not increase [Ca2+]i.
		                        		
		                        			CONCLUSION
		                        			In the presence of extracellular Ca2+, ATP and ACh increased [Ca2+]i in OHCs not only by Ca2+ influx through ion channel on cell membrane but also a release of Ca2+ from IP3-sensitive calcium reservoir and CICR. In the absence of extracellular Ca2+, ATP activated IP3 sensitive calcium reservoir and Ca2+ release through IP3 sensitive calcium reservoir, in turn CICR was induced. ACh can not activate IP3 sensitive calcium reservoir and CICR in the absence of extracellular Ca2+, therefore, the effect of ACh was dependent of extracellular Ca2+.
		                        		
		                        		
		                        		
		                        			Acetylcholine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Adenosine Triphosphate
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium Channels
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Cochlea
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Guinea Pigs
		                        			;
		                        		
		                        			Hair Cells, Auditory, Outer
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Microscopy, Confocal
		                        			;
		                        		
		                        			Ryanodine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Thapsigargin
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
8.Niflumic acid hyperpolarizes the smooth muscle cells by opening BK(Ca) channels through ryanodine-sensitive Ca(2+) release in spiral modiolar artery.
Li LI ; Ke-Tao MA ; Lei ZHAO ; Jun-Qiang SI
Acta Physiologica Sinica 2008;60(6):743-750
		                        		
		                        			
		                        			The mechanism by which niflumic acid (NFA), a Cl(-) channel antagonist, hyperpolarizes the smooth muscle cells (SMCs) of cochlear spiral modiolar artery (SMA) was explored. Guinea pigs were used as subjects and perforated patch clamp and intracellular recording technique were used to observe NFA-induced response of SMC in the acutely isolated SMA preparation. The results showed that bath application of NFA, indanyloxyacetic acid 94 (IAA-94) and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) caused hyperpolarization and evoked outward currents in all cells at low resting potential (RP), but had no effects in cells at high RP. In the low RP SMCs, the average RP was about (-42.47+/-1.38) mV (n=24). Application of NFA (100 mumol/L), IAA-94 (10 mumol/L) and DIDS (200 mumol/L) shifted the RP to (13.7+/-4.3) mV (n=9, P<0.01), (11.4+/-4.2) mV (n=7, P<0.01) and (12.3+/-3.7) mV (n=8, P<0.01), respectively. These drug-induced responses were in a concentration-dependent manner. NFA-induced hyperpolarization and outward current were almost blocked by charybdotoxin (100 nmol/L), iberiotoxin (100 nmol/L), tetraethylammonium (10 mmol/L), BAPTA-AM (50 mumol/L), ryanodine (10 mumol/L) and caffeine (0.1-10 mmol/L), respectively, but not by nifedipine (100 mumol/L), CdCl2 (100 mumol/L) and Ca(2+)-free medium. It is concluded that NFA induces a release of intracellular calcium from the Ca(2+) stores and the released intracellular calcium in turn causes concentration-dependent and reversible hyperpolarization and evokes outward currents in the SMCs of the cochlear SMA via activation of the Ca(2+)-activated potassium channels.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Arteries
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cochlea
		                        			;
		                        		
		                        			blood supply
		                        			;
		                        		
		                        			Guinea Pigs
		                        			;
		                        		
		                        			Large-Conductance Calcium-Activated Potassium Channels
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Membrane Potentials
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Niflumic Acid
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Ryanodine
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
9.Effects of strophanthidin on intracellular calcium concentration in ventricular myocytes of guinea pig.
Su-Wen SU ; Yan-Fang XU ; He-Shan MEI ; Ya-Juan QI ; Jing-Xiang YIN ; Chuan WANG ; Yong-Jian ZHANG ; Yong-Li WANG
Acta Pharmaceutica Sinica 2008;43(3):259-266
		                        		
		                        			
		                        			Effect of strophanthidin (Str) on intracellular calcium concentration ([Ca2+]i) was investigated on isolated ventricular myocytes of guinea pig. Single ventricular myocytes were obtained by enzymatic dissociation technique. Fluorescent signal of [Ca2+]i was detected with confocal microscopy after incubation of cardiomycytes in Tyrode' s solution with Fluo3-AM. The result showed that Str increased [Ca2+]i in a concentration-dependent manner. The ventricular myocytes began to round-up into a contracture state once the peak level of [Ca2+]i was achieved in the presence of Str (10 micromol L(- 1)), but remained no change in the presence of Str (1 and 100 nmol L(-1)). Tetrodotoxin (TTX), nisodipine, and high concentration of extracellular Ca2+ changed the response of cardiomycytes to Str (1 and 100 nmol L(-1)) , but had no obvious effects on the action of Str (10 micromol L(-1)). The elevation of [Ca2+]i caused by Str at all of the detected concentrations was partially antagonized by rynodine (10 micromol L(-1)) or the removal of Ca2+ from Tyrode's solution. In Na+, K+ -free Tyrode' s solution, the response of cardiomycytes in [Ca2+]i elevation to Str (10 micromol L(-1)) was attenuated, while remained no change to Str (1 and 100 nmol L(-1)). TTX, nisodipine, and high concentration of extracellular Ca2+ changed the response of cardiomycytes to Str at all of the detected concentrations in Na+, K+ -free Tyrode's solution. The study suggests that the elevation of [Ca2+]i by Str at the low (nomomolar) concentrations is partially mediated by the extracellular calcium influx through Ca2+ channel or a "slip mode conductance" of TTX sensitive Na+ channel. While the effect of Str at high (micromolar) concentrations was mainly due to the inhibition of Na+, K+ -ATPase. Directly triggering the release of intracellular Ca2+ from sarcoplasmic reticulum (SR) by Str may be also involved in the mechanism of [Ca2+]i elevation.
		                        		
		                        		
		                        		
		                        			3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Aequorin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium Channel Blockers
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Calcium Channels
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Fura-2
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			supply & distribution
		                        			;
		                        		
		                        			Guinea Pigs
		                        			;
		                        		
		                        			Myocardium
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Nifedipine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Ryanodine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Sarcolemma
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Sarcoplasmic Reticulum
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sodium-Calcium Exchanger
		                        			;
		                        		
		                        			Sodium-Potassium-Exchanging ATPase
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Strophanthidin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tetrodotoxin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Thapsigargin
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
10.Effect of ryanodine receptor 2 gene silencing on ischemia-reperfusion injury of rat myocardial cells.
Zhu-ying GUO ; Qiang JIAO ; Shi-ting WANG ; Mang-hua XU ; Feng-hou GAO
Chinese Journal of Pathology 2008;37(11):760-764
OBJECTIVESTo block the synthesis of ryanodine receptor 2 (RyR2) in myocardial cells by RNA interference and to investigate its biological impact on ischemia-reperfusion (I/R) in rat myocardial cells.
METHODSRat myocardial cells were isolated and cultured for an I/R model in vitro. RNA interference technique was used to block the synthesis of RyR2 in myocardial cells. Changes of LDH level, apoptosis, RyR2 mRNA expression and cytosolic Ca(2+) concentration were analyzed accordingly.
RESULTSMyocardial cells after I/R manipolation were severely injuried (LDH leakage, 125 IU/L vs 12 IU/L, P < 0.05), apoptosis (60.1% vs 5.5%, P < 0.05), significant cytosolic Ca(2+) overload (21.2 vs 7.6, P < 0.05) and remarkable mitochondrial membrane potential loss (37.2 vs 85.1, P < 0.05). However, no visible change of RyR2 was observed (20.1 vs 22.7, P > 0.05). Pre-treatment with RyR2 specified siRNA demonstrated suppressed expression of RyR2 (6.8 vs 20.1, P < 0.05), increased mitochondrial membrane potential (55.8 vs 37.2, P < 0.05), attenuated cytosolic Ca(2+) overload (8.6 vs 21.2) and cellular apoptosis (31.2% vs 60.1%, P < 0.05).
CONCLUSIONRyR2 gene silencing enables to protect myocardial cells from I/R injury in vitro.
Animals ; Apoptosis ; drug effects ; genetics ; Cells, Cultured ; Gene Silencing ; immunology ; physiology ; Membrane Potential, Mitochondrial ; drug effects ; immunology ; Myocardial Reperfusion Injury ; immunology ; pathology ; Myocytes, Cardiac ; drug effects ; pathology ; Oxygen ; metabolism ; RNA Interference ; RNA, Small Interfering ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; immunology ; pathology ; Ryanodine Receptor Calcium Release Channel ; drug effects ; genetics
            
Result Analysis
Print
Save
E-mail