1.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
2.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
3.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
4.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
5.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
6.Identification of chemical components and determination of vitexin in the raw powder of Tongluo Shenggu capsule
Gelin WU ; Ruixin FAN ; Chuling LIANG ; Leng XING ; Yongjian XIE ; Ping GONG ; Peng ZHOU ; BO LI
Journal of China Pharmaceutical University 2025;56(2):166-175
The present study employed UPLC-MS/MS to analyze and identify compounds in the raw powder of Tongluo Shenggu capsules. An HPLC method for the determination of vitexin content was established. The analysis of this drug was performed on a 30 ℃ thermostatic Acquity UPLC® BEH C18 (2.1 mm×100 mm,1.7 μm) column, with the mobile phase comprising 0.2% formic acid-methanol flowing at 0.3 mL /min in a gradient elution manner. Mass spectrometry was detected by ESI sources in both positive and negative ion modes for qualitative identification of chemical constituents. 12 flavonoid and 3 stilbenes compounds in the raw powder of Tongluo Shenggu capsules were successfully identified. Additionally, an HPLC method for the determination of vitexin content was established using a XBridge C18 column (4.6 mm × 250 mm, 5 µm) with a mobile phase of 0.05% glacial acetic acid in methanol for gradient elution, at a column temperature of 30 °C, a flow rate of 1.0 mL/min, and an injection volume of 20 μL. The method demonstrated good linearity in the concentration range of 10 µg/mL to 40 µg/mL (R=1.000) with an average recovery rate of 96.7%. The establishment of these methods provides a scientific basis for the quality control and development of the raw powder of Tongluo Shenggu capsules.
7.Research progress on impacts of air pollutants, gut microbiota, and seminal microbiota on semen quality
Wenchao XIA ; Jiahua SUN ; Yuya JIN ; Ruixin LUO ; Ruyan YAN ; Yuming GUI ; Yongbin WANG ; Fengquan ZHANG ; Wei WU ; Weidong WU ; Huijun LI
Journal of Environmental and Occupational Medicine 2025;42(8):1003-1008
In recent years, China has been facing the dual challenges of declining fertility rates and births, with male reproductive health issues, especially the decline in semen quality, identified as a pivotal contributor to this phenomenon. Meanwhile, accumulating evidence indicates that air pollutants, an increasingly severe environmental problem, can damage semen quality not only directly through their biological toxicity but also indirectly by disrupting the composition of microbial communities in the gut and semen, thereby dysregulating immune function, endocrine homeostasis, and oxidative stress responses. The gut microbiota and semen microbiota, as important components of the human microecosystem, play crucial roles in maintaining reproductive health. This article comprehensively reviewed the research progress on the potential effects of air pollutants (particulate matter and gaseous pollutants), gut microbiota, and semen microbiota on semen quality. Specifically, it elucidated the mechanisms of interaction between these factors and explored how they affect male fertility.
9.Metal-organic Framework Immobilized Enzyme and Its Application in Screening of Enzyme Inhibitors of Traditional Chinese Medicine:A Review
Haipeng LIU ; Yong ZHANG ; Jing WANG ; Tianci LYU ; Ruixin DING ; Guihua GAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):256-264
Enzymes are widely used in chemical and pharmaceutical industries because of their advantages of high efficiency and specificity. However, the shortcomings of the free enzymes, such as poor stability and difficulty in recycling, limit their application. Therefore, the immobilization and application of enzymes have become one of the research hotspots. The selection of the immobilization carriers is a critical step in the process of enzyme immobilization. Metal-organic frameworks(MOFs), a kind of porous materials, are formed by the coordination of metal ions or metal clusters with organic ligands. As an emerging immobilization carrier, its advantages such as high porosity, strong stability, and surface modifiability make it ideal for immobilized enzyme carriers. By immobilizing the free enzyme on MOFs, the above mentioned deficiencies of the free enzymes can be effectively solved, which greatly broaden the applicable condition. Ligand fishing is a method to find receptor-specific ligands from complex components, which has the advantages of high efficiency, simple sample pretreatment and high specificity. The MOF-enzyme complex formed by enzyme immobilization can act as a "fishing rod" for ligand fishing, which can screen out the targets from the complex system of components. The complex chemical composition and various active ingredients of traditional Chinese medicine(TCM) make the ligand fishing technology to play a big role in the screening of enzyme inhibitors from TCM. And the screened enzyme inhibitors are expected to be further developed into the lead compounds with good efficacy and low adverse effects, so the immobilized enzymes of MOFs have a wide application in the screening of active ingredients from TCM. Based on this, this paper summarized the methods of immobilized enzymes of MOFs in recent years, analyzed the characteristics, advantages and disadvantages of each method, and summarized the laws of preparation conditions and mechanisms. Meanwhile, the application and future development of immobilized enzymes of MOFs in the field of enzyme inhibitor screening from TCM were also summarized and prospected, with a view to providing a reference for the development of natural ingredients and the modernization of TCM.
10.Application of melt electrowriting technology in tissue engineering
Yu JIANG ; Feng HE ; Huan LIU ; Ruixin WU
Chinese Journal of Tissue Engineering Research 2024;28(10):1606-1612
BACKGROUND:With computer-aided design,melt electrowriting technology can precisely construct 3D tissue engineering scaffolds with specific morphology,which has attracted increasing attention in tissue engineering. OBJECTIVE:To elaborate on the progress of melt electrowriting technology in tissue engineering in recent years. METHODS:PubMed and CNKI were used to retrieve articles about applications of melt electrowriting technology in tissue engineering.The search time was from March 2008 to February 2023.The search terms were"melt electrowriting,melt electrospinning,electrospinning,tissue engineering,scaffold,regeneration"in English and"melt electrowriting,electrospinning,tissue engineering"in Chinese.A preliminary screening of articles was performed by reading the titles and abstracts.Finally,69 articles were included for review. RESULTS AND CONCLUSION:(1)Melt electrowriting technology can achieve precise layer-by-layer deposition of fibers compared to traditional electrospinning technology,which better simulates the complex structure of natural tissues.Compared to other 3D printing technologies,smaller-diameter fibers can be prepared by melt electrowriting technology,resulting in highly ordered porous structures.(2)By combining with other scaffold preparation techniques or materials,such as fused deposition modeling,solution electrospinning technology,and hydrogel,melt electrowriting technology shows great potential in preparing complex tissue engineering scaffolds,which provides certain possibilities for achieving complex tissue regeneration.(3)The regeneration of complex tissues often involves blood vessels,nerves,and soft and hard tissues at the same time.The regeneration of blood vessels and nerves is of great significance to realize the physiological reconstruction of tissues.However,soft and hard tissues have certain difficulties to realize the coordinated regeneration of both due to their different biological and mechanical properties.Melt electrowriting technology has certain advantages in the field of bionic scaffolds due to its good biocompatibility,the ability to prepare multi-scale scaffolds and high porosity.

Result Analysis
Print
Save
E-mail