1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Establishment of a Multiplex Detection Method for Common Bacteria in Blood Based on Human Mannan-Binding Lectin Protein-Conjugated Magnetic Bead Enrichment Combined with Recombinase-Aided PCR Technology
Jin Zi ZHAO ; Ping Xiao CHEN ; Wei Shao HUA ; Yu Feng LI ; Meng ZHAO ; Hao Chen XING ; Jie WANG ; Yu Feng TIAN ; Qing Rui ZHANG ; Na Xiao LYU ; Qiang Zhi HAN ; Xin Yu WANG ; Yi Hong LI ; Xin Xin SHEN ; Jun Xue MA ; Qing Yan TIE
Biomedical and Environmental Sciences 2024;37(4):387-398
Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannan-binding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP. Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays. Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05). Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.
5.Factors Influencing Inpatient Costs for Patients Undergoing Surgery for Intrauterine Lesions under DRG Payment
Yutong WANG ; Weiguo ZHU ; Xueqin SUN ; Jiali TONG ; Jingya ZHOU ; Qing ZHAO ; Bocheng LI ; Wei ZHANG ; Xiaokun LIU ; Rui DONG ; Chen XIE ; Ding HAN
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1069-1076
To analyze the factors affecting the cost of hospitalization for patients and provide insights using the intrauterine lesion surgery group (DRG code NE19) as an example. This study was a retrospective cross-sectional study, with data from the first page of medical records of patients enrolled under NE19 at a comprehensive tertiary hospital in Beijing from March 15, 2022 to November 30, 2023. Influence factor selection and multifactorial linear regression analysis were conducted with hospitalization cost as the dependent variable, and patient's basic information, treatment information and key concern factors as independent variables. The profit and loss of medical records containing key factors and differences in indicators of hospitalization cost structure were analyzed in the context of clinical practice. A total of 2213 valid medical records (all female patients) were included, with patients predominantly young and middle-aged women under 45 years of age (72.12%), and with 931 day surgery medical records (42.07%). The diagnosis records included 334(15.09%) multiple uterine leiomyomas, and 246(11.12%) pelvic adhesions. A total of 150(6.78%) medical records involved ovary- and tubal-related surgeries or manipulations, with 160(7.23%) main operations being laparoscopic hysterectomy of diseased uterine lesions and 38(1.72%) mechanical rotational excision of abnormal uterine tissue using transhysteroscopy. Linear regression analysis showed that whether or not ovarian and tubal surgical operations were involved ( The NE19 group of hospitals in the study had a high loss rate, and factors such as the severity of the patient's condition and the use of new technologies affected hospitalization costs, suggesting that there is room for further optimization of the existing grouping scheme. Tiered payment standards can be set up for different tiers of healthcare institutions, and a sound and optimized exclusion mechanism can be used to promote the development of new technologies. The internal management of hospitals should encourage the development of daytime surgery to improve the efficiency of medical services.
6.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
7.Study of large-scale functional brain networks and topological properties in patients with major depressive disorder
Hao SUN ; Rui YAN ; Lingling HUA ; Zhilu CHEN ; Jiabo SHI ; Yu CHEN ; Xiaoqin WANG ; Qing LU ; Zhijian YAO
Chinese Journal of Behavioral Medicine and Brain Science 2024;33(5):425-431
Objective:To explore the changes of large-scale functional brain networks and network topological properties in patients with major depressive disorder (MDD) whose diagnosis had not changed after 5 years of follow-up.Methods:Totally 521 cases of hospitalized MDD patients were recruited from January 2012 to August 2018, and another 204 cases of gender- and age-matched healthy controls were recruited. All participants completed resting-state functional magnetic resonance scanning and clinical assessment. Their diagnosis were reviewed 5 years after discharge.A total of 258 participants whose diagnosis had not changed were counted into the MDD group for analysis. The differences in large-scale brain network connectivity between the two groups were analyzed by constructing a whole-brain functional network, on the basis of which the altered topological properties of the sensorimotor network (SMN), visual network (VN) and default mode network (DMN) were further analyzed between the two groups.The SPSS 24.0 software was used for data analysis and the independent sample t-test and χ2 test were used for the data comparison of the two groups. Results:Compared with the healthy controls, the MDD group had significantly decreased network clustering, mainly involving the SMN, VN and DMN (edge P<0.001, cluster P<0.05). The MDD group had decreased functional connectivity(FC) strength within the SMN, VN and DMN networks, the FC strength between the SMN and VN networks, between the frontoparietal network (FPN) and the DAN networks were decreased(all P<0.05, FDR corrected). Graph-theory analysis showed that local efficiency, clustering coefficient, and normalized shortest path length were decreased in the MDD group, node efficiency was decreased in the left ventral medial prefrontal cortex and the middle of the bilateral insula, node centrality was decreased in the middle of the bilateral insula and occipital lobe, and the betweenness was decreased in the middle of the right insula (all P<0.05, FDR corrected). Conclusion:MDD exhibits abnormal network functional connectivity, disruption of network topological properties, diminished optimal information processing, and to some extent reflects the severity of depressive symptoms. The decreased ability of information transfer flow in the insula plays an important role for the functional abnormality of the network.
8.Effect of salidroside combined with rosavin on ischemic brain injury in rats
Wen-Fang LAI ; Yu-Ting JIANG ; Hui-Ling WU ; Qing-Qing WU ; Jing-Quan CHEN ; Xue-Rui ZHENG ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(12):2303-2311
Aim To study the effect of salidroside combined with rosavin on ischemic stroke in rats.Methods The model of MCAO was established by u-sing thread-embolic method.The rats were divided into the sham group,MCAO group,salidroside combined with rosavin group,positive control group,and the drug was given continuously for seven days.The infarct volume was measured by MRI and neurological deficit score was evaluated by Zea-Longa.The levels of Ne-uN,BDNF,TGF-β1,p-Smad were observed by West-ern blot and immunofluorescence staining.The expres-sions of IL-1β,TNF-α and IL-6 were performed by RT-qPCR/ELISA.The primary cortical neurons were isolated,OGD/R inducted,divided into the normal group,OGD/R group,salidroside combined with rosa-vin group,and TGF-β1 inhibitor+salidroside com-bined with rosavin group,the drug was given for 24 hours,and the expressions of NeuN,BDNF,IL-1β,TNF-α and IL-6 were measured.Results Salidroside combined with rosavin could decrease the infarct vol-ume,improve the neurological function,promote the levels of Neun,BDNF,TGF-β1,p-Smad,and inhibit the expressions of IL-1β,TNF-α and IL-6.Salidroside combined with rosavin could promote NeuN,BDNF,inhibit IL-1β,TNF-α,IL-6 in primary nerve cells in-duced by OGD/R,and these effects were blocked by TGF-β1 inhibitor.Conclusions Salidroside combined with rosavin has neuroprotective effects on MCAO rats,and primary neurons are induced by OGD/R,and these effects are closely related to the TGF-β pathway.
9.Systematic identification of chemical forms of key terpene synthase in Cinnamomum camphora.
Qing MA ; Rui MA ; Ping SU ; Ye SHEN ; Mei-Lan CHEN ; Bao-Long JIN ; Shao-Lin OUYANG ; Juan GUO ; Guang-Hong CUI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2023;48(9):2307-2315
Cinnamomum camphora is an important economic tree species in China. According to the type and content of main components in the volatile oil of leaf, C. camphora were divided into five chemotypes, including borneol-type, camphor-type, linalool-type, cineole-type, and nerolidol-type. Terpene synthase(TPS) is the key enzyme for the formation of these compounds. Although several key enzyme genes have been identified, the biosynthetic pathway of(+)-borneol, which has the most economic value, has not been reported. In this study, nine terpenoid synthase genes CcTPS1-CcTPS9 were cloned through transcriptome analysis of four chemical-type leaves. After the recombinant protein was induced by Escherichia coli, geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) were used as substrates for enzymatic reaction, respectively. Both CcTPS1 and CcTPS9 could catalyze GPP to produce bornyl pyrophosphate, which could be hydrolyzed by phosphohydrolase to obtain(+)-borneol, and the product of(+)-borneol accounted for 0.4% and 89.3%, respectively. Both CcTPS3 and CcTPS6 could catalyze GPP to generate a single product linalool, and CcTPS6 could also react with FPP to generate nerolidol. CcTPS8 reacted with GPP to produce 1,8-cineol(30.71%). Nine terpene synthases produced 9 monoterpene and 6 sesquiterpenes. The study has identified the key enzyme genes responsible for borneol biosynthesis in C. camphora for the first time, laying a foundation for further elucidating the molecular mechanism of chemical type formation and cultivating new varieties of borneol with high yield by using bioengineering technology.
Cinnamomum camphora/enzymology*
;
Alkyl and Aryl Transferases/chemistry*
10.Leonurine inhibits ferroptosis in renal tubular epithelial cells by activating p62/Nrf2/HO-1 signaling pathway.
Ai-Jun WU ; Nai-Qing CHEN ; Li-Hua HUANG ; Ran CHENG ; Xiao-Wan WANG ; Chuang LI ; Wei MAO ; Qing-Ming HUANG ; Peng XU ; Rui-Min TIAN
China Journal of Chinese Materia Medica 2023;48(8):2176-2183
To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.
Humans
;
Ferroptosis
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Sincalide/pharmacology*
;
Signal Transduction
;
Epithelial Cells/metabolism*
;
Glutathione

Result Analysis
Print
Save
E-mail