1. Dynamic changes in cytoskeletal elements following acute cerebral ischemia and reperfusion in rats
Yong ZHANG ; Xue-Qin FU ; Xu-Huan ZOU ; Man-Man WANG ; Wei-Wei WANG ; Rui LAN
Chinese Pharmacological Bulletin 2024;40(2):263-272
Aim To investigate the dynamic time-course changes in neuronal cytoskeleton after acute ischemia and reperfusion in rats. Methods Reperfusion was performedin rats by blocking the middle cerebralarteryfor 90 min, then therats wereobserved and collected at different time points. The brain damage wasobserved by Nissl staining,and neurobehavioural function was evaluated with neurological deficit score and forelimb placement test. The cellular changes in the alternations of cytoskeletal elements including microtubule associated protein 2 (MAP2) and neurofilament heavy chain (NF-H) were observed by immunohistochemistry staining and Western blot. Impaired axons, dendrites and cytoskeletal alternations were detected by electron microscope. Results Brain damage and neurobehavioural function were gradually aggravated with the prolongation of reperfusion. Brain damage appeared earlier and more severe in striatum than in cortex. Moreover, decreased MAP2-related and increased NF-H-related immunoreactive intensities were found in the ischemic areas. Impaired cytoskeletal arrangement and reduced dense were indicated. Damaged cytoskeletal components such as microtubules and neurofilament arrangement, decreased axonal filament density, and swelled dendrites were observed after cerebral ischemia reperfusion by ultrastructural observations. Conclusions Different brain regions have diverse tolerance to ischemia-reperfusion injury. Major elements of neuronal cytoskeleton show dynamic responses to ischemia and reperfusion, which may further contribute to brain damage and neurological impairment following MCAO and reperfusion.
2.Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Quan GAO ; Lin LI ; Qi-Man ZHANG ; Qin-Song SHENG ; Ji-Liang ZHANG ; Li-Jun JIN ; Rui-Yan SHANG
Chinese journal of integrative medicine 2024;30(1):25-33
OBJECTIVE:
To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:
Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:
The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION
Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation
;
Matrix Metalloproteinase 9
;
Molecular Docking Simulation
;
Cell Cycle
;
ErbB Receptors
;
Apoptosis
;
Colorectal Neoplasms/pathology*
;
Cell Line, Tumor
3.Maternal MTR gene polymorphisms and their interactions with periconceptional folic acid supplementation in relation to offspring ventricular septal defects
Xiao-Rui RUAN ; Meng-Ting SUN ; Jian-Hui WEI ; Man-Jun LUO ; Han-Jun LIU ; Jia-Peng TANG ; Liu-Xuan LI ; Jia-Bi QIN
Chinese Journal of Contemporary Pediatrics 2024;26(9):899-906
Objective To investigate how maternal MTR gene polymorphisms and their interactions with periconceptional folic acid supplementation are associated with the incidence of ventricular septal defects(VSD)in offspring.Methods A case-control study was conducted,recruiting 426 mothers of infants with VSD under one year old and 740 mothers of age-matched healthy infants.A questionnaire survey collected data on maternal exposures,and blood samples were analyzed for genetic polymorphisms.Multivariable logistic regression analysis and inverse probability of treatment weighting were used to analyze the associations between genetic loci and VSD.Crossover analysis and logistic regression were utilized to examine the additive and multiplicative interactions between the loci and folic acid intake.Results The CT and TT genotypes of the maternal MTR gene at rs6668344 increased the susceptibility of offspring to VSD(P<0.05).The GC and CC genotypes at rs3768139,AG and GG at rs1050993,AT and TT at rs4659743,GG at rs3768142,and GT and TT at rs3820571 were associated with a decreased risk of VSD(P<0.05).The variations at rs6668344 demonstrated an antagonistic multiplicative interaction with folic acid supplementation in relation to VSD(P<0.05).Conclusions Maternal MTR gene polymorphisms significantly correlate with the incidence of VSD in offspring.Mothers with variations at rs6668344 can decrease the susceptibility to VSD in their offspring by supplementing with folic acid during the periconceptional period,suggesting the importance of periconceptional folic acid supplementation in genetically at-risk populations to prevent VSD in offspring.
4.A case-control study on the associations of parental smoking and alcohol consumption during the periconceptional period and their interactions with risk of congenital heart disease in offspring
Liu-Xuan LI ; Man-Jun LUO ; Xiao-Rui RUAN ; Han-Jun LIU ; Jia-Peng TANG ; Gui-Hong YANG ; Jia-Bi QIN
Chinese Journal of Contemporary Pediatrics 2024;26(10):1019-1026
Objective To explore the associations of parental smoking and alcohol consumption during the periconceptional period and their interactions with risk of congenital heart disease(CHD)in offspring.Methods The parents of children with simple CHD aged 0 to 1 year(n=683)were recruited as the case group,while the parents of healthy children aged 0 to 1 year(n=740)served as the control group.A case-control study was conducted,and a questionnaire was used to collect information on perinatal exposures.After controlling for relevant confounding factors using multivariate logistic regression analysis and propensity score matching,the associations of parental smoking and alcohol consumption during the periconceptional period and their interactions with CHD were examined,as well as the cumulative effects of smoking and drinking on CHD risk.Results Maternal active smoking(OR=2.91,95%CI:1.60-5.30),passive smoking(OR=1.94,95%CI:1.56-2.42),and alcohol consumption(OR=2.59,95%CI:1.89-3.54),as well as paternal smoking(OR=1.52;95%CI:1.22-1.90)and drinking(OR=1.48,95%CI:1.19-1.84),were associated with an increased risk of CHD in offspring.There was no interaction between parental smoking and drinking behaviors during the periconceptional period concerning the risk of CHD in offspring(P>0.05).The more parents'smoking and drinking behaviors during the perinatal pregnancy,the higher the risk of CHD in their offspring(OR=1.50,95%CI:1.36-1.65).Conclusions Parental smoking and alcohol consumption during the periconceptional period are associated with the occurrence of CHD in offspring,and there is a cumulative effect on CHD risk,suggesting that reducing tobacco and alcohol exposure during the periconceptional period may lower the incidence of CHD.
5.Dynamic changes of neuronal cells at different time points following cerebral ischemia-reperfusion injury in rats
Xu-Huan ZOU ; Rui LAN ; Xue-Qin FU ; Wei-Wei WANG ; Man-Man WANG ; Chen TANG ; Shuang LIU ; Hong-Yu LI ; Xiao-Ming SHEN
Chinese Pharmacological Bulletin 2024;40(6):1056-1066
Aim To investigate the dynamic changes of neuronal cells at different time points following acute cerebral ischemia-reperfusion injury by establishing a model of brain ischemia-reperfusion injury.Methods Thirty male Sprague-Dawley(SD)rats were ran-domly divided into six groups:sham group and cere-bral ischemia-reperfusion injury(IR)groups at differ-ent time points.Focal cerebral ischemia-reperfusion injury model was established using the middle cerebral artery occlusion(MCAO)technique.The Longa sco-ring method was used to assess neurobehavioral scores in rats.After successful model preparation,routine paraffin sections were made,and TUNEL staining and immunohistochemistry staining with NeuN antibody were performed to observe cell apoptosis and neuronal cell survival,respectively.Immunohistochemistry stai-ning was also performed to investigate the changes in glial fibrillary acidic protein(GFAP)as a marker for astrocytes,ionized calcium-binding adapter molecule 1(IBA-1)as a marker for microglia,and CD31 as a marker for endothelial cells at different time points.Results No significant changes were observed in neu-ronal cells of the sham group at different time points.In the cerebral ischemia-reperfusion injury groups,cell apoptosis was activated at IR3h and increased in quan-tity with morphological damage as time progressed.Ne-uN+neurons showed signs of ischemic injury after IR3h,with abnormal cell morphology.From 12 h,Ne-uN+neurons decreased in a time-dependent manner and reached their peak severity at 24 h.GFAP+astro-cytes decreased significantly after IR3h,while poorly labeled GFAP+astrocytes increased at IR 6 h and al-most disappeared in the infarcted area at 24 h and 48 h.The number of IBA-1+microglia-positive cells de-creased at IR3h,and their volume increased at IR6h.Microglial cell death was observed in the infarcted area at IR12h.CD31+endothelial cells around the infarc-ted cortex and striatum increased significantly after IR3h and persisted until 48 h.Conclusions After cerebral ischemia-reperfusion injury,the number of ap-optotic cells increases with the prolongation of time,and NeuN+neurons exhibit the most severe damage at 24 h.GFAP+astrocytes and microglial cells gradually die over time.The number of CD31+endothelial cells increases significantly around the infarcted cortex and striatum after 3 h of reperfusion and persists until 48 h.
6.Effect of Xiaoxuming Decoction on synaptic plasticity following acute cerebral ischemia-reperfusion in rats.
Xue-Qin FU ; Rui LAN ; Yong ZHANG ; Man-Man WANG ; Xu-Huan ZOU ; Wei-Wei WANG
China Journal of Chinese Materia Medica 2023;48(14):3882-3889
This study aims to explore the effect of Xiaoxuming Decoction on synaptic plasticity in rats with acute cerebral ischemia-reperfusion. A rat model of cerebral ischemia-reperfusion injury was established by middle cerebral artery occlusion(MCAO). Rats were randomly assigned into a sham group, a MCAO group, and a Xiaoxuming Decoction(60 g·kg~(-1)·d~(-1)) group. The Longa score was rated to assess the neurological function of rats with cerebral ischemia for 1.5 h and reperfusion for 24 h. The 2,3,5-triphenyltetrazolium chloride(TTC) staining and hematoxylin-eosin(HE) staining were employed to observe the cerebral infarction and the pathological changes of brain tissue after cerebral ischemia, respectively. Transmission electron microscopy was employed to detect the structural changes of neurons and synapses in the ischemic penumbra, and immunofluorescence, Western blot to determine the expression of synaptophysin(SYN), neuronal nuclei(NEUN), and postsynaptic density 95(PSD95) in the ischemic penumbra. The experimental results showed that the modeling increased the Longa score and led to cerebral infarction after 24 h of ischemia-reperfusion. Compared with the model group, Xiaoxuming Decoction intervention significantly decreased the Longa score and reduced the formation of cerebral infarction area. The modeling led to the shrinking and vacuolar changes of nuclei in the brain tissue, disordered cell arrangement, and severe cortical ischemia-reperfusion injury, while the pathological damage in the Xiaoxuming Decoction group was mild. The modeling blurred the synaptic boundaries and broadened the synaptic gap, while such changes were recovered in the Xiaoxuming Decoction group. The modeling decreased the fluorescence intensity of NEUN and SYN, while the intensity in Xiaoxuming Decoction group was significantly higher than that in the model group. The expression of SYN and PSD95 in the ischemic penumbra was down-regulated in the model group, while such down-regulation can be alleviated by Xiaoxuming Decoction. In summary, Xiaoxuming Decoction may improve the synaptic plasticity of ischemic penumbra during acute cerebral ischemia-reperfusion by up-regulating the expression of SYN and PSD95.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Brain Ischemia/drug therapy*
;
Reperfusion Injury/metabolism*
;
Infarction, Middle Cerebral Artery
;
Neuronal Plasticity
;
Reperfusion
7. Mechanism of neuronal death in ischemic stroke
Man-Man WANG ; Xue-Qin FU ; Xu-Huan ZOU ; Wei-Wei WANG ; Yong ZHANG ; Bao-Qi WANG ; Rui LAN
Chinese Pharmacological Bulletin 2023;39(9):1627-1632
Stroke is the second leading cause of death in the world, of which about 60 % - 80 % are ischemic stroke. Ischemic stroke will inevitably cause the damage of neurons in the core area. With the increase of ischemic time, other neurons in the ischemic penumbra will also die due to the loss of " signal connection", and further lead to body dysfunction. In view of the complexity of neuronal death mechanism after ischemic stroke, understanding the action principle of death mechanism can better save ischemic penumbra neurons. This review mainly expounds several main mechanisms and potential therapeutic targets of neuronal death after ischemic stroke, so as to provide basis and help for the improvement of action mechanism research and drug development.
8. Research on cellular damages and astrocyte activation after cerebral ischemia and reperfusion
Rui LAN ; Yun-Zhi MA ; Shi-Rui ZHU ; Bao-Qi WANG ; Xue-Qin FU ; Xu-Huan ZOU ; Man-Man WANG ; Wei-Wei WANG ; Yong ZHANG
Chinese Pharmacological Bulletin 2023;39(4):739-744
Aim To observe cellular damage and astrocyte activation at different time points of cerebral ischemia and reperfusion. Methods The middle cerebral artery of male SpragueDawley rats was occluded for 90 min followed by different time points of reperfusion. Eighty-five SPF male SD rats were randomly divided into control group (Sham), IR3, 6, 12, 24 and IR48h (MCAO followed by 48 h of reperfusion) group. Cerebral ischemia and reperfusion injury was observed by HE staining, and the structure of astrocytes was estimated with transmission electron microscopy (TEM). GFAP expression was detected by immunofluorescence staining and Western blot. Results Cerebral ischemia following by different time points of reperfusion led to different degrees of cellular damage, which was the most serious at 24 h of reperfusion. TEM showed destruction of astrocytes structure, swollen organelles and broken mitochondrial ridge. After cerebral ischemia-reperfusion, the expression levels of GFAP were significant up-regulated in the ischemic penumbra cortex and the highest was at 48 h of reperfusion, indicating astrocytes were activated. In addition, the results showed the gradual decrease in GFAP expression in the infarct core. Conclusions After cerebral ischemia-reperfusion, cellular damage is aggravated, and astrocytes are gradually activated in the ischemic penumbra. With the extension of reperfusion time, the boundaries of infarct area and ischemic area are gradually clear, and scarring may occur.
9. Research progress on hypoxia/reoxygenation model of nerve cells in vitro
Man-Man WANG ; Xue-Qin FU ; Xu-Huan ZOU ; Wei-Wei WANG ; Zhen LEI ; Yong ZHANG ; Bao-Qi WANG ; Rui LAN
Chinese Pharmacological Bulletin 2023;39(5):823-828
Ischemic stroke is the second leading cause of human death and the third reason of disability. Meanwhile, the incidence is rising year after year worldwide. Ischemic stroke could cause ischemia-reperfusion injury after blood recanalization treat-ment, but the mechanism of ischemia-reperfusion injury is still not very clear, so it is necessary to build a preclinical model with specific characteristics. Up to now, animal experiments have been still complicated, and the culture of brain slices has some limitations. The cell model in vitro has become a simplified and valuable tool widely used by researchers. The paper systematically summarizes the common type of nerve cells, and further analyzes establishment methods and principle, relevant research progress on the in vitro model of ischemia-reperfusion, in order to provide reference for rationally selecting hypoxia and reoxygenation model for basic research on cerebral ischemia and reperfusion and drug screening.
10.Effect of Xiaoxuming Decoction on activation of astrocytes in acute cerebral ischemia/reperfusion injury.
Xue-Qin FU ; Man-Man WANG ; Rui LAN ; Yong ZHANG ; Xu-Huan ZOU ; Wei-Wei WANG ; Chen TANG ; Shuang LIU ; Hong-Yu LI
China Journal of Chinese Materia Medica 2023;48(21):5830-5837
This study investigated the effect of Xiaoxuming Decoction(XXMD) on the activation of astrocytes after cerebral ischemia/reperfusion(I/R) injury. The model of cerebral IR injury was established using the middle cerebral artery occlusion method. Fluorocitrate(FC), an inhibitor of astrocyte activation, was applied to inhibit astrocyte activation. Rats were randomly divided into a sham group, a model group, a XXMD group, a XXMD+FC group, and a XXMD+Vehicle group. Neurobehavioral changes at 24 hours after cerebral IR injury, cerebral infarction, histopathological changes observed through HE staining, submicroscopic structure of astrocytes observed through transmission electron microscopy, fluorescence intensity of glial fibrillary acidic protein(GFAP) and thrombospondin 1(TSP1) measured through immunofluorescence, and expression of GFAP and TSP1 in brain tissue measured through Western blot were evaluated in rats from each group. The experimental results showed that neurobehavioral scores and cerebral infarct area significantly increased in the model group. The XXMD group, the XXMD+FC group, and the XXMD+Vehicle group all alleviated neurobehavioral changes in rats. The pathological changes in the brain were evident in the model group, while the XXMD group, the XXMD+FC group, and the XXMD+Vehicle group exhibited milder cerebral IR injury in rats. The submicroscopic structure of astrocytes in the model group showed significant swelling, whereas the XXMD group, the XXMD+FC group, and XXMD+Vehicle group protected the submicroscopic structure of astrocytes. The fluorescence intensity and protein expression of GFAP and TSP1 increased in the model group compared with those in the sham group. However, the XXMD group, the XXMD+FC group, and XXMD+Vehicle group all down-regulated the expression of GFAP and TSP1. The combination of XXMD and FC showed a more pronounced effect. These results indicate that XXMD can improve cerebral IR injury, possibly by inhibiting astrocyte activation and down-regulating the expression of GFAP and TSP1.
Rats
;
Animals
;
Astrocytes
;
Brain Ischemia/metabolism*
;
Brain
;
Reperfusion Injury/metabolism*
;
Infarction, Middle Cerebral Artery

Result Analysis
Print
Save
E-mail