1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.Intergenerational Effects on Metabolic Health: Perspectives on Maternal Nutrition and Exercise During Pregnancy
Jie LI ; Hai-Wang SHI ; Rui DUAN
Progress in Biochemistry and Biophysics 2025;52(6):1605-1616
With the increasing prevalence of overweight and obesity among children and adolescents in China, pediatric metabolic syndrome has emerged as a significant public health challenge. The Developmental Origins of Health and Disease (DOHaD) theory underscores the critical influence of early environmental factors on lifelong metabolic health. Consequently, maternal nutritional status and physical activity during pregnancy have become key modifiable factors that have attracted considerable attention in recent years. Research indicates exposure to a maternal high-fat diet (HFD) during pregnancy has long-term effects on offspring health, which may be transmitted through placental transit disorder, inflammation, and oxidative stress. Similarly, a high-protein diet (HPD) during pregnancy exhibits a dose- and time-dependent biphasic effect: excessive intake may lead to fetal growth restriction and an increased risk of preterm birth, whereas moderate supplementation may instead reduce the susceptibility of offspring to obesity. Interestingly, caloric restriction (CR) during pregnancy presents a double-edged sword: while it may impair the development of metabolic organs in offspring, moderate CR in metabolically compromised mothers can ameliorate maternal metabolic dysfunction and reprogram oocyte DNA methylation, significantly lowering the risk of metabolic disorders in offspring. Notably, metabolic abnormalities induced by a low-protein diet (LPD) during pregnancy demonstrate lifecycle-accumulative effects and transgenerational inheritance, with offspring exhibiting obesity phenotypes during weaning, insulin resistance in adulthood, and hepatic decompensation in old age, mediated through oocyte epigenetic reprogramming. Additionally, maintaining an optimal micronutrient balance is crucial for the metabolic homeostasis of offspring, as both deficiency and excess can lead to detrimental outcomes. Maternal exercise has been established as a safe and effective non-pharmacological intervention that confers multigenerational metabolic benefits through diverse biological pathways. Maternal metabolic dysregulation represents a critical determinant of offspring metabolic disorders. Regular exercise during gestation exerts protective effects by attenuating maternal systemic inflammation and reducing the incidence of pregnancy-related complications, thereby effectively mitigating fetal overgrowth and metabolic dysfunction. This dual benefit for both mother and offspring underscores the pivotal role of gestational physical activity in promoting long-term metabolic health. The placenta, serving as the exclusive interface for maternal-fetal communication, mediates exercise-induced metabolic programming through enhanced secretion of key regulatory factors (including SOD3, Apelin, ADPN, and Irisin) and promotes the development of vascular networks, collectively optimizing nutrient transport efficiency. The intrauterine period represents a crucial window for epigenetic reprogramming, during which maternal exercise modulates DNA methylation patterns of critical metabolic genes (e.g., Ppargc-1α, Prdm16, Klf4, and Slc23a2) in offspring, thereby enhancing their capacity to resist metabolic disorders. Notably, the regulatory effects of maternal exercise extend beyond the gestational period. Postnatally, exercise-induced modifications in the bioactive components of breast milk and gut microbiota composition contribute to the sustained maintenance of metabolic homeostasis in offspring, establishing a continuum of metabolic protection from prenatal to postnatal stages. This review explores the potential of maternal combined nutrition-exercise interventions, suggesting that such strategies may synergistically enhance transgenerational health benefits through interactions within the metabolic-epigenetic network, thereby outperforming single interventions. Additionally, it examines current research limitations, including controversies surrounding transgenerational mechanisms, sex-specific responses, and undefined dynamic thresholds, while providing directions for future investigations. These findings pave the way for a theoretical foundation for early-life health interventions, potentially offering a more effective strategy for combatting intergenerational metabolic disorders.
3.Efficacy and safety of nicorandil and ticagrelor de-escalation after percutaneous coronary intervention for elderly patients with acute coronary syndrome
Xiang SHAO ; Ning BIAN ; Hong-Yan WANG ; Hai-Tao TIAN ; Can HUA ; Chao-Lian WU ; Bei-Xing ZHU ; Rui CHEN ; Jun-Xia LI ; Tian-Chang LI ; Lu MA
Medical Journal of Chinese People's Liberation Army 2024;49(1):75-81
Objective To explore the efficacy and safety of ticagrelor de-escalation and nicorandil therapy in elderly patients with acute coronary syndrome(ACS)after percutaneous coronary intervention(PCI).Methods A total of 300 elderly patients with ACS were selected from the Sixth and Seventh Medical Center of Chinese PLA General Hospital and Beijing Chaoyang Integrative Medicine Emergency Rescue and First Aid Hospital from November 2016 to June 2019,including 153 males and 147 females,aged>65 years old.All the patients received PCI,and all had double antiplatelet therapy(DAPT)scores≥2 and a new DAPT(PRECISE-DAPT)score of≥25.All patients were divided into two groups by random number table method before operation:ticagrelor group(n=146,ticagrelor 180 mg load dose followed by PCI,and ticagrelor 90 mg bid after surgery)and ticagrelor de-escalation + nicorandil group(n=154,ticagrelor 180 mg load dose followed by PCI,ticagrelor 90 mg bid+nicorandil 5 mg tid after surgery,changed to ticagrelor 60 mg bid+ nicorandil 5 mg tid 6 months later).Follow-up was 12 months.The composite end points of cardiovascular death,myocardial infarction and stroke,the composite end points of mild hemorrhage,minor hemorrhage,other major hemorrhage and major fatal/life-threatening hemorrhage as defined by the PLATO study,and the composite end points of cardiovascular death,myocardial infarction,stroke and bleeding within 12 months in the two groups were observed.Results The comparison of general baseline data between the two groups showed no statistically significant difference(P>0.05).There was also no significant difference in the composite end points of cardiovascular death,myocardial infarction and stroke between the two groups(P>0.05).The cumulative incidence of bleeding events in ticagrelor de-escalation + nicorandil group was significantly lower than that in ticagrelor group(P<0.05),while the composite end points of cardiovascular death,myocardial infarction,stroke and bleeding were also significantly lower than those in tecagrelor group(P<0.05).Conclusion In elderly patients with ACS,the treatment of ticagrelor de-escalation + nicorandil after PCI may not increase the incidence of ischemic events such as cardiovascular death,myocardial infarction or stroke,and it may reduce the incidence of hemorrhagic events.
4.Effect of Combined Frequency Stimulation on The Electrophysiology of Granule Neurons in The Hippocampal Dentate Gyrus Area of Hindlimb Unloading Mice
Jun-Qiao ZHAO ; Ming-Qiang ZHU ; Hai-Jun ZHU ; Rui FU ; Ze ZHANG ; Jia-Le WANG ; Chong DING
Progress in Biochemistry and Biophysics 2024;51(7):1670-1686
ObjectiveIn recent years, the negative impact of microgravity on astronauts’ nervous systems has received widespread attention. The repetitive transcranial magnetic stimulation (rTMS) technology has shown significant positive effects in the treatment of neurological and psychiatric disorders. The potential benefits of combined frequency stimulation (CFS) which combines different frequency stimulation patterns in ameliorating neurological dysfunctions induced by the microgravity environment, still require in-depth investigation. Exploring the therapeutic effects and electrophysiological mechanisms of CFS in improving various neurological disorders caused by microgravity holds significant importance for neuroscience and the clinical application of magnetic stimulation. MethodsThis study employed 40 C57BL/6 mice, randomly divided into 5 groups: sham group, hindlimb unloading (HU) group, 10 Hz group, 20 Hz group, and combined frequency stimulation (10 Hz+20 Hz, CFS) group. Mice in all groups except the sham group received 14 d of simulated microgravity conditions along with 14 d of repetitive transcranial magnetic stimulation. The effects of CFS on negative emotions and spatial cognitive abilities were assessed through sucrose preference tests and water maze experiments. Finally, patch-clamp techniques were used to record action potentials, resting membrane potentials, and ion channel dynamics of granule neurons in the hippocampal dentate gyrus (DG) region. ResultsCompared to the single-frequency stimulation group, behavioral results indicated that the combined frequency stimulation (10 Hz+20 Hz) significantly improved cognitive impairments and negative emotions in simulated microgravity mice. Electrophysiological experiments revealed a decrease in excitability of granule neurons in the hippocampal DG region after HU manipulation, whereas the combined frequency stimulation notably enhanced neuronal excitability and improved the dynamic characteristics of voltage-gated Na+ and K+ channels. ConclusionThe repetitive transcranial magnetic stimulation with combined frequencies (10 Hz+20 Hz) effectively ameliorates cognitive impairments and negative emotions in simulated microgravity mice. This improvement is likely attributed to the influence of combined frequency stimulation on neuronal excitability and the dynamic characteristics of Na+ and K+ channels. Consequently, this study holds the promise to provide a theoretical basis for alleviating cognitive and emotional disorders induced by microgravity environments.
5.Research on Automatic Microalgae Detection System Based on Deep Learning
Rui-Jie XIANG ; Hao LIU ; Zhen LU ; Ze-Yu XIAO ; Hai-Peng LIU ; Yin-Chu WANG ; Xiao PENG ; Wei YAN
Progress in Biochemistry and Biophysics 2024;51(1):177-189
ObjectiveThe scale of microalgae farming industry is huge. During farming, it is easy for microalgae to be affected by miscellaneous bacteria and other contaminants. Because of that, periodic test is necessary to ensure the growth of microalgae. Present microscopy imaging and spectral analysis methods have higher requirements for experiment personnel, equipment and sites, for which it is unable to achieve real-time portable detection. For the purpose of real-time portable microalgae detection, a real-time microalgae detection system of low detection requirement and fast detection speed is needed. MethodsThis study has developed a microalgae detection system based on deep learning. A microscopy imaging device based on bright field was constructed. With imaged captured from the device, a neural network based on YOLOv3 was trained and deployed on microcomputer, thus realizing real-time portable microalgae detection. This study has also improved the feature extraction network by introducing cross-region residual connection and attention mechanism and replacing optimizer with Adam optimizer using multistage and multimethod strategy. ResultsWith cross-region residual connection, the mAP value reached 0.92. Compared with manual result, the detection error was 2.47%. ConclusionThe system could achieve real-time portable microalgae detection and provide relatively accurate detection result, so it can be applied to periodic test in microalgae farming.
6.Bioequivalence study of buspirone hydrochloride tablets in Chinese healthy subjects
Ping LU ; Rui WANG ; Hui-Hui WU ; Hai-Yan LIU ; Ge-Fei HE ; Shun-Zhi ZHANG ; Wei WU
The Chinese Journal of Clinical Pharmacology 2024;40(5):723-727
Objective To study the pharmacokinetic characteristics of buspirone hydrochloride tablets in healthy adult populations under conditions of fasting and postprandial administration.Methods A single-center,randomized,three-cycle partially repeated crossover trial design was adopted,and 36 subjects were enrolled on fasting/postprandial,one tablet of the test preparation was taken in one cycle,one tablet of reference preparation(5 mg of buspirone tablets)was taken once in each of 2 cycles,the drug concentration of buspirone in plasma was determined by liquid chromatography-tandem mass spectrometry,and the pharmacokinetic parameters were calculated by WinNonlin software.Results Main pharmacokinetics of buspirone after oral administration of test and reference preparations in fasting group,the Cmax was(285.72±286.08)and(308.94±341.03)pg·mL-1;AUC0-t were(577.09±491.10)and(618.62±642.56)pg·mL-1·h;AUC0-∞ were(586.85±510.04)and(655.92±687.95)pg·mL-1·h;tmax was 0.75(0.33-4.00)and 0.75(0.33-1.75)h.Main pharmacokinetics of buspirone after oral administration of test and reference preparations in the postprandial group,the Cmax were(676.36±603.64)and(760.33±610.27)pg·mL-1;AUC0-t were(1 755.58±1 001.69)and(1 743.00±1 073.33)pg·h·mL-1;AUC0-∞ were(1 839.97±1 044.60)and(1 818.00±1 106.95)pg·mL-1·h;tmax was 1.25(0.25-4.50)and 1.00(0.25-3.50)h.The 90%confidence intervals of the AUC0-t and AUC0-∞ geometric mean ratios of the test preparation and the reference preparation in the fasting test and the postprandial test all fell between 80.00%and 125.00%,and the 95%upper confidence limit of of Cmax was ≤0 and geometric mean ratios point estimates fall between 80.00%and 125.00%.Conclusion Two kinds of buspirone hydrochloride are bioequivalent in Chinese healthy adult subject.
7.Identification of HCoV-229E Interacting Host Factor by Utilization of Proximity Labeling-Mass Spectrometry Technique
Rui-Xia JU ; Hao-Yong WANG ; Hai-Nan LIU ; Xuan LIU ; Cheng CAO
Progress in Biochemistry and Biophysics 2024;51(11):3011-3020
ObjectiveCoronavirus is a class of long-standing pathogens, which are enveloped single-stranded positive-sense RNA viruses. The genome all encodes 4 structural proteins: spike protein (S), nucleocapsid protein (N), membrane protein (M), and envelope protein (E). The nucleocapsid protein (NP) serves as a key structural component of coronaviruses, playing a vital function in the viral life cycle. NP acts as an RNA-binding protein, with a critical role in identifying specific sequences within the viral genome RNA, facilitating the formation of ribonucleoprotein (RNP) complexes with viral RNA to stabilize the viral genome and contribute to viral particles assembly. The NP consists of two primary structural domains, the N-terminal domain (NTD) and the C-terminal domain (CTD). The NTD is primarily responsible for RNA binding, whereas the CTD is involved in polymerization. The N protein demonstrated to trigger the host immune response and to modulate the cell cycle of infected cells by interacting with host proteins. The NP, one of the most abundant protein in coronaviruses, is essential in understanding the pathogenic mechanism of coronaviruses through its interaction with host factors, which response for determining the virus pathogenicity. HCoV-229E is a widely distributed coronavirus that typically causes mild upper respiratory tract diseases, accounting for a significant portion of common cold cases. However, its pathogenicity is notably lower compared to other coronaviruses like MERS-CoV, SARS-CoV, and SARS-CoV-2. The exact molecular mechanism behind remains unexplained, and how HCoV-229E N protein influences virus replication, host antiviral immunity, and pathogenesis need to be further explored. MethodsProximity labeling-mass spectrometry technique and bioinformatics analysis were used to screen for potential host factors interacting with the NP of human coronavirus 229E (HCoV-229E). In this study, a recombinant adenovirus Ad-V5-NPHCoV-229E-TurboID was constructed to express the fusion protein of HCoV-229E NP and biotin ligase (TurboID). A549 cells were infected with the Ad-V5-NPHCoV-229E-TurboID. After 30 min biotin treatment, NP interacting proteins were labeled with biotin by biotin ligase, and subsequently isolated with streptavidin cross-linked magnetic beads. The potential interacting proteins were identified using label-free proteomic mass spectrometry and further validated through immunoprecipitation and immunofluorescence assays. ResultsWe identified a total of 584 potential interacting proteins. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted the enrichment of glycogen synthase kinase (GSK)3A and GSK3B in the glycolysis/gluconeogenesis pathway, indicating HCoV-229E NP connection to diabetes through aberrant activity. Moreover, SARS-CoV-2 infection can exacerbate hyperglycemia and metabolic dysregulation in diabetic individuals by activating the ACE2 receptor. Moreover, SARS-CoV-2 was observed to cause potentially harm to pancreatic β‑cells and leading to insulin deficiency, which not only worsens the condition of diabetic patients but also raises the possibility of new-onset diabetes in non-diabetic individuals. We demonstrated that GSK3A and GSK3B interacted with NP of HCoV-229E, suggesting that the NP may engage in various coronavirus pathogenic processes by interacting with GSK3. ConclusionThese findings suggest that proximity labeling-mass spectrometry technique is a valuable tool for identifying virus-host interaction factors, and lay the foundation for future investigations into the mechanisms underlying coronavirus replication, proliferation, and pathogenesis.
8.The antitumor activity and mechanisms of piperlongumine derivative C12 on human non-small cell lung cancer H1299 cells
Hai-tao LONG ; Xue LEI ; Jia-yi CHEN ; Jiao MENG ; Li-hui SHAO ; Zhu-rui LI ; Dan-ping CHEN ; Zhen-chao WANG ; Yue ZHOU ; Cheng-peng LI
Acta Pharmaceutica Sinica 2024;59(10):2773-2781
The compound (
9.Latent profile analysis of exercise fear in patients with chronic heart failure and analysis of influencing factors
Hui WANG ; Rui HAI ; Rong ZHANG ; Yaping XU ; Yi YANG
Chinese Journal of Practical Nursing 2024;40(23):1816-1824
Objective:To investigate the current status of exercise fear in patients with chronic heart failure (CHF) and explore the different potential classifications and influencing factors of exercise fear, in order to provide theoretical basis for formulating targeted interventions.Methods:The subjects of this study were 278 patients with CHF treated in the Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University from July 2023 to November 2023 using convenience sampling method. A questionnaire survey was conducted using a general information questionnaire, Fear of Activity in Patients with Chronic Heart Failure, Cardiac Exercise Self-Efficacy Instrument, Personal Support Scale From Family, and Multidimensional Fatigue Index-20. Latent profile analysis to identify potential subtypes of motor fear in patients, and unordered multiple logistic regression to evaluate the influencing factors of different subtypes were used.Results:Totally 278 valid questionnaires were collected, including 96 females and 182 males, with a majority aged between 60 and 74 years old, with 114 cases accounting for 41.0%. The 278 CHF patients had a fear of movement score of (34.78 ± 13.17) points were divided into three potential categories based on their fear of movement: low-level fear of movement group (107 cases, 38.5%), moderate fear of movement group (108 cases, 38.8%), and high-level fear of movement group (63 cases, 22.7%). Disordered multiple logistic regression analysis showed that family support level ( OR = 2.520), exercise self-efficacy ( OR = 0.913), and fatigue ( OR = 1.065) were significant influencing factors for high-level exercise fear in CHF patients (all P<0.05), while age, education level, disease course, number of coexisting diseases, family support level, exercise self-efficacy, and fatigue were significant influencing factors for high-level exercise fear in CHF patients ( OR values ranged from 0.007 to 6.292, all P<0.05). Conclusions:There are three potential categories of exercise fear in patients with CHF. Medical staff should develop targeted intervention plans based on the characteristics of different categories of patients to reduce their level of exercise fear.
10.Causal association between depression and stress urinary incontinence:A two-sample bidirectional Mendelian randomization study
Cheng-Xiao JIANG ; Wei-Qi YIN ; Jing-Jing XU ; Ying-Jiao SHI ; Li WANG ; Zhi-Bo ZHENG ; Rui SU ; Qin-Bo HU ; Jun-Hai QIAN ; Shu-Ben SUN
National Journal of Andrology 2024;30(3):217-223
Objective:To investigate the causal correlation between depression and stress urinary incontinence(SUI)using Mendelian randomization(MR)analysis.Methods:We searched the FinnGen Consortium database for genome-wide association studies(GWAS)on depression and obtained 23 424 case samples and 192 220 control samples,with the GWAS data on SUI provided by the UK Biobank,including 4 340 case samples and 458 670 control samples.We investigated the correlation between depression and SUI based on the depression data collected from the Psychiatric Genomics Consortium(PGC).We employed inverse-variance weighting as the main method for the MR study,and performed sensitivity analysis to verify the accuracy and stability of the findings.Results:Analysis of the data from the UK Biobank and FinnGen Consortium showed that depression was significantly correlated with an increased risk of SUI(P=0.005),but not SUI with the risk of depression(P=0.927).And analysis of the PGC data verified the correlation of depression with the increased risk of SUI(P=0.043).Conclusion:Depression is associated with an increased risk of SUI,while SUI does not increase the risk of depression.

Result Analysis
Print
Save
E-mail