1.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
2.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
3.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
4.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
5.Improvement effects and mechanism of total secondary ginsenosides on hypertrophic changes in cardiomyocytes
Bin LI ; Jia LI ; Zhongjie YUAN ; Mingjun ZHU ; Shiyang XIE ; Yuan GAO ; Rui YU ; Xinlu WANG
China Pharmacy 2025;36(12):1430-1435
OBJECTIVE To investigate the ameliorative effects and potential mechanism of total secondary ginsenosides (TSG) on hypertrophic changes of primary cardiomyocytes stimulated by angiotensin Ⅱ (Ang Ⅱ). METHODS Primary cardiomyocytes were isolated from the hearts of neonatal SD rats and divided into the following groups: control group, AngⅡ group (2 µmol/L), TSG group (7.5 µg/mL), PFK-015 group [6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) inhibitor, 10 nmol/L], and TSG+PFK-015 group (TSG 7.5 µg/mL+PFK-015 10 nmol/L). The surface area, protein synthesis, energy metabolism-related indicators [free fatty acid (FFA), coenzyme A (CoA), acetyl coenzyme A (acetyl-CoA)], and the expressions of glycolysis-related factors [hypoxia-inducible factor 1α (HIF-1α), glucose transporter protein 4 (GLUT-4), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and PFKFB3] in primary cardiomyocytes of each group were measured. RESULTS Compared with the control group, the surface area of primary cardiomyocytes and protein synthesis were significantly increased, the content of FFA, protein and mRNA expressions of HIF-1α, LDHA, PDK1 and PFKFB3 were significantly increased or up-regulated in the AngⅡ group, while the contents of CoA and acetyl-CoA, the protein and mRNA expressions of GLUT-4 were significantly decreased or down-regulated (P<0.05). Compared with the AngⅡ group, both TSG group and PFK-015 group showed significant improvements in these indexes, with the TSG+PFK-015 group generally demonstrating superior effects compared to either treatment alone (P<0.05). CONCLUSIONS TSG can reduce the surface area of AngⅡ-induced primary cardiomyocytes, decrease protein synthesis, and inhibit their hypertrophic changes. These effects may be related to improving energy metabolism and the inhibition of glycolysis activity.
6.Mitral valve re-repair with leaflet augmentation for mitral regurgitation in children: A retrospective study in a single center
Fengqun MAO ; Kai MA ; Kunjing PANG ; Ye LIN ; Benqing ZHANG ; Lu RUI ; Guanxi WANG ; Yang YANG ; Jianhui YUAN ; Qiyu HE ; Zheng DOU ; Shoujun LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):958-962
Objective To investigate the efficacy of leaflet augmentation technique to repair the recurrent mitral valve (MV) regurgitation after mitral repair in children. Methods A retrospective analysis was conducted on the clinical data of children who underwent redo MV repair for recurrent regurgitation after initial MV repair, using a leaflet augmentation technique combined with a standardized repair strategy at Fuwai Hospital, Chinese Academy of Medical Sciences, from 2018 to 2022. The pathological features of the MV, key intraoperative procedures, and short- to mid-term follow-up outcomes were analyzed. Results A total of 24 patients (12 male, 12 female) were included, with a median age of 37.6 (range, 16.5–120.0) months. The mean interval from the initial surgery was (24.9±17.0) months. All children had severe mitral regurgitation preoperatively. The cardiopulmonary bypass time was (150.1±49.5) min, and the aortic cross-clamp time was (94.0±24.2) min. There were no early postoperative deaths. During a mean follow-up of (20.3±9.1) months, 3 (12.5%) patients developed moderate or severe mitral regurgitation (2 severe, 1 moderate). One (4.2%) patient died during follow-up, and one (4.2%) patient underwent a second MV reoperation. The left ventricular end-diastolic diameter was significantly reduced postoperatively compared to preoperatively [ (43.5±8.6) mm vs. (35.8±7.8)mm, P<0.001]. Conclusion The leaflet augmentation technique combined with a standardized repair strategy can achieve satisfactory short- to mid-term outcomes for the redo mitral repair after previous MV repair. It can be considered a safe and feasible technical option for cases with complex valvular lesions and severe pathological changes.
7.Effect and Mechanism of Total Saponins from Panax Japonicus on White Adipose Tissue Browning/Brown Adipose Tissue Activation in High-fat Diet-induced Mice
Shuwen WANG ; Yaqi HU ; Rui WANG ; Yifan ZHANG ; Mengzhen XUE ; Yaqi WANG ; Fangqi XIA ; Leiqi ZHU ; Chengfu YUAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):71-78
ObjectiveTo investigate the effect and mechanism of total saponins from Panax japonicus (TSPJ) on white adipose tissue (WAT) browning/brown adipose tissue (BAT) activation in C57BL6/J male mice fed on a high-fat diet (HFD). MethodThirty-two C57BL6/J male mice (8-week-old) were randomly divided into a normal group, a model group, a low-dose TSPJ group, and a high-dose TSPJ group. The mice in the low-dose and high-dose TSPJ groups were given TSPJ for four months by gavage at 25, 75 mg·kg-1·d-1, respectively, and those in the other groups were given 0.5% sodium carboxymethyl cellulose (CMC-Na) accordingly. After four months of feeding, all mice were placed at 4 ℃ for acute cold exposure, and the core body temperature was monitored. Subsequently, all mice were sacrificed, and BAT and inguinal WAT (iWAT) were separated rapidly to detect the corresponding indexes. Hematoxylin-eosin (HE) staining was used to observe the morphological changes in each group. The effect of TSPJ on the mRNA expression of uncoupling protein 1 (UCP1), fatty acid-binding protein 4 (FABP4), cytochrome C (CytC), PR domain-containing protein 16 (PRDM16), elongation of very long chain fatty acids protein 3 (ELOVL3), peroxisome proliferator-activated receptor γ (PPARγ), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in iWAT and BAT was detected by Real-time polymerase chain reaction (Real-time PCR). Western blot was also used to detect the protein expression of UCP1, PRDM16, PPARγ, and PGC-1α in BAT and iWAT of each group. The effect of TSPJ on UCP1 expression in BAT and iWAT was detected by immunohistochemistry. Result① Compared with the model group, TSPJ could decrease the body weight and proportions of iWAT and BAT in the HFD-induced mice (P<0.05, P<0.01). ② The body temperature of mice in the model group decreased compared with that in the normal group in the acute cold exposure tolerance test (P<0.05). The body temperature in the high-dose TSPJ group increased compared with that in the model group (P<0.01). ③ Compared with the normal group, the model group showed increased adipocyte diameter in iWAT and BAT and decreased number of adipocytes per unit area. Compared with the model group, the TSPJ groups showed significantly reduced cell diameter and increased number of cells per unit area, especially in the high-dose TSPJ group. ④ Compared with the normal group, the model group showed decreased mRNA expression of FABP4, UCP1, CytC, PRDM16, ELOVL3, PGC-1α, and PPARγ in adipose tissues of mice (P<0.05, P<0.01). Compared with the model group, after intervention with TSPJ, the mRNA expression was significantly up-regulated (P<0.05, P<0.01). ⑤ Compared with the normal group, the model group showed decreased protein expression of UCP1, PRDM16, PPARγ, and PGC-1α in adipose tissues of mice (P<0.05, P<0.01). Compared with the model group, after intervention with TSPJ, the protein expression increased significantly (P<0.05, P<0.01). ConclusionTSPJ could induce the browning of iWAT/BAT activation and enhance adaptive thermogenesis in obese mice induced by HFD. The underlying mechanism may be attributed to the activation of the PPARγ/PGC-1α signaling pathway.
8.Construction and Validation of A Prediction Model for Pulmonary Nodule Nature Based on Clinicopathological Features,Imaging and Serum Biomarkers
Rui YUAN ; Taoli WANG ; Wenhui YU ; Shunan ZHANG ; Shenghua LUO ; Yunlei LI ; Xiangrong WANG ; Jiachuan WANG ; Haitao GUO
Journal of Modern Laboratory Medicine 2024;39(1):146-151,157
Objective The study aimed to construct and validate a predictive model for pulmonary nodules(PN)nature based on clinicopa-thological features,imaging,and serum biomarkers,so as to provide scientificdecision-making for early diagnosis and treatment of lung cancer.Methods A retrospective was performed on 816 PN patients with definited pathological diagnosis who received surgical resection analysisor lung biopsy in the Department of Thoracic Surgery and Oncology of Shenzhen Traditional Chinese Medicine Hospital from January 2019 to February 2023.Among them,113 cases that did not meet the inclusion criteria were excluded,and the remaining 703 cases were included in the study.The study based on the clinicopathologic features(age,gender,smoking history,smoking cessation history and family history of cancer),chest imaging(maximum diameter of nodule,location of lesion,clear border,Lobulation,spiculation,vascular convergence sign,vacuole,calcification,air bronchial sign,emphysema,nodule type and pleural indentation,nodule number)and serum carcinoembryonic antigen(CEA),cytokeratin 19 fragment(CYFRA21-1),squamous cell carcinoma antigen(SCCA)in patients with PN.These cases were randomly divided into a modeling group(n=552,237 benign,315 malignant)and a validation group(n=151,85 benign,66 malignant).First,univariate analysis was performed to screen for statistically significant predictors of nodules nature.Then,multivariate regression analysis was performed to screen for independent predictors of nodules nature.Finally,the prediction model of PN nature was constructed by logistic regression analysis.Subsequently,the validation group data were entered into the proposed model and Mayo clinic(Mayo)model,veterans affairs(VA)model,Brock University(Brock)model,Peking University(PKU)model and Guangzhou Medical University(GZMU)model,respectively.PN malignancy probability was calculated.The receiver operating characteristic(ROC)curves were plotted.The diagnostic efficiency of each model was compared according to the area under the curve(AUC).Results There were statistically significant variables including age,family history of cancer,maximum nodule diameter,nodule type,upper lobe of lung,calcification,vascular convergence sign,lobulation,clear border,spiculation,and serum CEA,SCCA,CYFRA21-1 using univariate analysis.Multiple regression analysis showed that age,CEA,clear border,CYFRA21-1,SCCA,upper lobe of lung,maximum nodule diameter,family history of cancer,spiculation and nodule type were independent predictors of PN nature.The prediction model equation constructed in this study is as follows:f(x)= ex/(1+ex),X=(-6.318 8+0.020 8×Age+0.527 4×CEA-0.928 4×clear border+0.294 6×Cyfra21-1+0.294×maximum nodule diameter+1.220 1×family history of cancer +0.573 2×upper lobe of lung +0.064 8×SCCA +1.461 5×Spiculation +1.497 6×nodule type).The AUC(0.799 vs 0.659,0.650)of the proposed model was significantly higher compared with Mayo model and VA model,and there were statistically significant differences(Z=3.029,2.638,P=0.003,0.008).However,compared with Brock model,PKU model and GZMU model,the differences of AUC(0.799 vs 0.762,0.773,0.769)were not statistically significant(Z=1.063,0.686,0.757,P=0.288,0.493,0.449).Conclusion The prediction model for PN nature established in this study is accurate and reliable,which can help clinics with early diagnosis and early intervention,and this prediction model deserves to be popularized.
9.Application of multimodal MRI in complex anal fistula
Feng SHI ; Xin WANG ; Quanyong WANG ; Lei SHI ; Rui KANG ; Yuan GAO
Journal of Practical Radiology 2024;40(2):240-243,274
Objective To investigate the application value of multimodal MRI in complex anal fistula.Methods The clinical and MRI data of 50 cases with complex anal fistula confirmed by surgery were collected.All patients were examined with 1.5T MR before surgery,including three major modules of conventional MRI,diffusion weighted imaging(DWI)and dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI).Finally,the diagnostic efficacy of different MRI modules in complex anal fistula was evaluated based on the surgical results.Results The surgery detected 73 internal orifices,81 external orifices,58 main fistulas,47 branch fistulas and 37 abscesses.Before the surgery,there were 63 internal orifices(86.3%),75 external orifices(92.6%),53 main fistulas(91.4%),40 branch fistulas(85.1%),and 37 abscesses(100%)correctly diagnosed by conventional MRI.Sixty internal orifices(82.2%),75 external orifices(92.6%),51 main fistulas(87.9%),37 branch fistulas(78.7%),and 37 abscesses(100%)were correctly diagnosed by conventional MRI+DWI,while 68 internal orifices(93.2%),78 external orifices(96.3%),56 main fistulas(96.6%),44 branch fistulas(93.6%),and 37 abscesses(100%)were correctly diagnosed by conventional MRI+DCE-MRI.There were 68 internal orifices(93.2%),78 external orifices(96.3%),56 main fistulas(96.6%),44 branch fistulas(93.6%),and 37 abscesses(100%)correctly diagnosed by conventional MRI+DWI+DCE-MRI.Compared with conventional MRI,conventional MRI+DWI or conventional MRI+ DCE-MRI,conventional MRI+DWI+DCE-MRI could find more internal orifices,main fistulas and branch fistulas,and the difference was statistically significant.The multimodal MRI had the highest consistency with the surgical results(Kappa=0.734,P<0.001).Conclusion MRI can accurately estimate the information of internal orifices,external orifices,main fistula,branch fistula and abscess of cases with complex anal fistula.The diagnostic accuracy of multimodal joint application is superior than that of single-modal and dual-modal application.
10.Irisin alleviates palmitic acid-induced osteogenic inhibition in bone marrow mesenchymal stem cells
Yuanshu ZHANG ; Xu HE ; Yuan XUE ; Yesheng JIN ; Kai WANG ; Qin SHI ; Yongjun RUI
Chinese Journal of Tissue Engineering Research 2024;28(1):26-31
BACKGROUND:Irisin,a myokine isolated from the transmembrane protein FNDC5 by muscle cells during exercise,has the function of inducing the browning of white adipose tissue,but its effect on lipotoxicity-induced osteogenic differentiation and the mechanism is unclear. OBJECTIVE:To investigate the effect of irisin on the osteogenic ability of palmitic acid-induced bone marrow mesenchymal stem cells and the mechanism of action. METHODS:CCK-8 assay was used to detect the effect of different concentrations of palmitic acid on the proliferation of mouse bone marrow mesenchymal stem cells and the effect of irisin on the proliferation of mouse bone marrow mesenchymal stem cells in the presence of palmitic acid.After pretreatment with irisin and palmitic acid for 24 hours,osteogenic differentiation of mouse bone marrow mesenchymal stem cells was induced by alkaline phosphatase staining as well as qRT-PCR was performed to detect the expression of osteogenesis-related genes on day 7 of osteogenic induction culture.The expression of proteins related to the AMPK/BMP2/SMAD signaling pathway was detected by western blot assay.Alizarin red staining was conducted on day 21 to detect osteogenic differences. RESULTS AND CONCLUSION:(1)The CCK-8 assay results suggested that the amplification of bone marrow mesenchymal stem cells was inversely proportional to the concentration of palmitic acid,but at 0.02 mmol/L concentration,palmitic acid had no significant effect on the amplification of bone marrow mesenchymal stem cells,and irisin did not affect the proliferation of bone marrow mesenchymal stem cells when its mass concentration was in the range of 0.1-20 μg/L.(2)Alkaline phosphatase staining and alizarin red staining showed that palmitic acid inhibited the osteogenic differentiation ability of bone marrow mesenchymal stem cells.Irisin improved palmitic acid-induced osteogenic inhibition of bone marrow mesenchymal stem cells.qRT-PCR results showed that palmitic acid could cause the downregulation of osteogenic-related genes,and irisin could inhibit this trend.(3)Western blot assay results showed that compared with the palmitic acid intervention group,irisin treatment enhanced AMPK/BMP2/SMAD signal transduction in bone marrow mesenchymal stem cells.It is found that irisin can improve the osteogenic differentiation ability of bone marrow mesenchymal stem cells pretreated with palmitic acid,and proposed that the specific mechanism might be mediated by AMPK/BMP/SMAD signaling pathway.

Result Analysis
Print
Save
E-mail