1.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
3.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
5.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
7.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
8.Improvement effects and mechanism of total secondary ginsenosides on hypertrophic changes in cardiomyocytes
Bin LI ; Jia LI ; Zhongjie YUAN ; Mingjun ZHU ; Shiyang XIE ; Yuan GAO ; Rui YU ; Xinlu WANG
China Pharmacy 2025;36(12):1430-1435
OBJECTIVE To investigate the ameliorative effects and potential mechanism of total secondary ginsenosides (TSG) on hypertrophic changes of primary cardiomyocytes stimulated by angiotensin Ⅱ (Ang Ⅱ). METHODS Primary cardiomyocytes were isolated from the hearts of neonatal SD rats and divided into the following groups: control group, AngⅡ group (2 µmol/L), TSG group (7.5 µg/mL), PFK-015 group [6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) inhibitor, 10 nmol/L], and TSG+PFK-015 group (TSG 7.5 µg/mL+PFK-015 10 nmol/L). The surface area, protein synthesis, energy metabolism-related indicators [free fatty acid (FFA), coenzyme A (CoA), acetyl coenzyme A (acetyl-CoA)], and the expressions of glycolysis-related factors [hypoxia-inducible factor 1α (HIF-1α), glucose transporter protein 4 (GLUT-4), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and PFKFB3] in primary cardiomyocytes of each group were measured. RESULTS Compared with the control group, the surface area of primary cardiomyocytes and protein synthesis were significantly increased, the content of FFA, protein and mRNA expressions of HIF-1α, LDHA, PDK1 and PFKFB3 were significantly increased or up-regulated in the AngⅡ group, while the contents of CoA and acetyl-CoA, the protein and mRNA expressions of GLUT-4 were significantly decreased or down-regulated (P<0.05). Compared with the AngⅡ group, both TSG group and PFK-015 group showed significant improvements in these indexes, with the TSG+PFK-015 group generally demonstrating superior effects compared to either treatment alone (P<0.05). CONCLUSIONS TSG can reduce the surface area of AngⅡ-induced primary cardiomyocytes, decrease protein synthesis, and inhibit their hypertrophic changes. These effects may be related to improving energy metabolism and the inhibition of glycolysis activity.
9.A case-control study on the association of Hashimoto’s thyroiditis and anti-thyroid antibodies with oral lichen planus
LIU Yuan ; CHEN Yan ; CONG Zhaoxia ; LI Yiming ; XUE Rui ; ZHAO Jin
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(9):757-764
Objective:
This study aims to explore the association between oral lichen planus (OLP) and Hashimoto’s thyroiditis (HT) and its anti-thyroid antibodies to provide clinical evidence for thyroid disease screening in patients with OLP.
Methods:
This study was approved by the institutional ethics committee. A total of 125 clinically and histopathologically confirmed patients with OLP were enrolled as the case group, and they were matched with 125 non-OLP controls based on sex and age. Demographic data (gender, age, lesion type, and disease duration) were collected from both groups. Serum levels of thyroid peroxidase antibodies (TPOAb) and thyroglobulin antibodies (TgAb) were measured to analyze their associations with sex, age, lesion type, and disease duration in patients with OLP.
Result:
The prevalence of HT in patients with OLP was 31.20%, significantly higher than that in the control group (9.60%) (χ2=18.504, P<0.001). The prevalence of HT in female patients with OLP (39.13%) was significantly higher than that in male patients (9.09%)(χ2=10.93,P<0.001). The positivity rate of thyroid peroxidase antibodies (TPOAb) in patients with OLP (17.6%) was significantly higher than in the control group (4.0%) (χ2=10.989, P<0.001). The TPOAb positivity rate was significantly higher in female patients (22.83%) than in male patients (3.03%) (χ2=5.210, P=0.014). There was no statistically significant difference in the positivity rate of TgAb between patients with OLP (7.2%) and the control group (3.2%) (P>0.05). Patients with erosive lesions had a significantly higher TPOAb positivity rate (25.0%, 17/68) compared to those with non-erosive lesions (8.77%, 5/57), and the difference was statistically significant (χ2=4.831, P=0.028). Logistic regression analysis revealed that female patients with OLP had an 8.935-fold higher risk of being TPOAb positive compared to males (OR=8.935, 95%CI: 1.134-70.388, P=0.038). Patients with erosive OLP lesions had a 3.199-fold higher risk of TPOAb positivity compared to those with non-erosive lesions (OR=3.199, 95%CI: 1.064-9.618, P=0.038).
Conclusion
The prevalence of HT is higher in patients with OLP, with higher positivity rates of anti-thyroid antibodies observed in female patients and those with erosive OLP lesions. This suggests that thyroid disease screening should be incorporated into the clinical management of patients with OLP, especially for women and patients who present with erosive lesions.
10.Comparison of Protein and Polypeptide Components and Antithrombotic Activity In Vitro of Three Preparations Containing Hirudo
Wanling ZHONG ; Yunnan MA ; Jinhong YE ; Xiaoyu FAN ; Huijuan SHEN ; Rui YUAN ; Yaxuan ZHANG ; Zhuyuan LIU ; Shouying DU ; Pengyue LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):184-194
ObjectiveTo compare the contents and relative molecular weight distributions of proteins and polypeptides in Naoxuekang dropping pills, Huoxue Tongmai capsules and Maixuekang capsules of Hirudo single medicinal preparations, to evaluate the in vitro anticoagulant, antiplatelet and fibrinolytic activities of the three preparations, and to investigate the effects of temperature, pH and digestive enzymes on the anticoagulant activities of the three preparations. MethodsThe contents of soluble proteins and polypeptides in the three preparations were determined by bicinchoninic acid assay(BCA) and Bradford method, and the relative molecular weight distributions of the three preparations were determined by electrophoresis combined with gel chromatography. The antithrombin activity of the three preparations was evaluated by fibrinogen-thrombin time(Fibg-TT) method, and their anticoagulant activities were further assessed by the elongations of activated partial thromboplastin time(APTT), prothrombin time(PT) and thrombin time(TT). The antiplatelet aggregation activities of the three preparations were measured by turbidimetry and the fibrinolytic activities were measured by fibrin plate method. Relative TT was used as index to investigate the effects of temperature, pH and digestive enzyme buffer on anticoagulant activities of the three preparations. ResultsAt the lowest single dosage, the contents of proteins and polypeptides were in the order of Maixuekang capsules>Huoxue Tongmai capsules>Naoxuekang dropping pills. Both Huoxue Tongmai capsules and Maixuekang capsules had 11 electrophoretic bands between 4.0 kDa and 90 kDa, the bands of Maixuekang capsules were more clear in the range of >25 kDa, and there was 1 obvious band at 14 kDa for the two capsules. Huoxue Tongmai capsules had one specific band at 9.0 kDa and Maixuekang capsules had one specific band at 48.0 kDa. Naoxuekang dropping pills only had 2 electrophoretic bands at 6.5 kDa and 8.5 kDa, primarily containing peptides below 2 kDa, most of which were oligopeptides. The anticoagulant activity concentrations of the three preparations exhibited a certain dose-dependent effect. At the lowest single dosage, The anticoagulant activity concentrations were ranked as Naoxuekang dropping pills>Huoxue Tongmai capsules>Maixuekang capsules. The prolongation effect of the three preparations on coagulation time was dose-dependent. At the same concentration, the prolongation effect of Naoxuekang dropping pills and Huoxue Tongmai capsules was APTT prolongation rate>TT prolongation rate>PT prolongation rate, whereas for Maixuekang capsules, the sequence was TT prolongation rate>APTT prolongation rate>PT lengthening rate. At the single minimum dosage, the order of APTT prolongation rate was Maixuekang capsules>Huoxue Tongmai capsules≈Naoxuekang dropping pills, the order of PT prolongation rate was Naoxuekang dropping pills≈Maixuekang capsules>Huoxue Tongmai capsules, and the order of TT prolongation rate was Maixuekang capsules>Huoxue Tongmai capsules>Naoxuekang dropping pills. The three preparations showed dose-dependent effects on platelet aggregation induced by adenosine diphosphate(ADP) and arachidonic acid(AA), and the effect induced by ADP was stronger than that induced by AA. The anti-platelet aggregation effect of Naoxuekang dropping pills was significantly stronger than that of Maixuekang capsules(P<0.01), whereas Huoxue Tongmai capsules had the effect of promoting platelet aggregation. None of the three preparations had the ability to dissolve fibrin. The anticoagulant activity of Naoxuekang dropping pills was least affected by heating, while the activities of the two capsules decreased significantly within 5 min above 80 ℃, and continued to decrease within 2 h. Compared with pure water, the anticoagulant activities of the three preparations could be increased by 1-3 times under strong acidity(pH 1-3). In the pepsin buffer, the anticoagulant activity of Naoxuekang dropping pills could be increased by 1-3 times, while the anticoagulant activities of Huoxue Tongmai capsules and Maxuekang capsules were significantly decreased, the lowest levels were about 60% and 20%, respectively. In trypsin buffer, the anticoagulant activities of Naoxuekang dropping pills, Huoxue Tongmai capsules and Maixuekang capsules decreased significantly, and the lowest levels decreased to about 41%, 41% and 35%, respectively. ConclusionThe contents of proteins and polypeptides and relative molecular weights of the preparations derived from lyophilized fresh Hirudo powder, dried Hirudo powder and reflux extract of Hirudo decrease sequentially, and the anticoagulant activity decrease gradually, but the anticoagulant pathway is different. And the anti-platelet aggregation activity of the reflux extract is significantly enhanced. The heat resistance and gastrointestinal stability of the three preparations increase successively, and the first two are suitable for enteric-soluble preparations, while the latter is suitable for routine oral administration. The above results can provide data reference for the rationality of different preparation methods, active substances, pharmacodynamics and mechanism of Hirudo preparations.


Result Analysis
Print
Save
E-mail