1.Effect of Carbohydrate Intake Order on Metabolic Profiles of Endurance Exercise Mice in a High-temperature Environment
Huan-Yu WANG ; Guo-Dong ZHOU ; Ru-Wen WANG ; Jun QIU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1529-1543
ObjectiveThe primary objective of this study was to investigate the effects of carbohydrate intake order on post-exercise recovery and metabolic regulation under heat stress, particularly in models of exercise induced fatigue. Given the increasing significance of optimizing nutritional strategies to support performance in extreme environmental conditions, this study aimed to provide experimental evidence that contributes to a better understanding of how the sequence in which carbohydrates are consumed impacts exercise recovery, metabolic homeostasis, and fatigue alleviation in a high-temperature environment. MethodsA mouse model of exercise-induced fatigue was established under high-temperature (35°C) to simulate heat stress. The subjects were divided into 3 distinct groups based on their carbohydrate intake order: the “mixed intake” group (HOT_MIX), where all macronutrients (carbohydrates, proteins, and fats) were consumed in a balanced ratio; the “carbohydrate-first intake” group (HOT_CHO), where carbohydrates were consumed first followed by other macronutrients; the “carbohydrate-later intake” group (HOT_PRO), where proteins and fats were consumed prior to carbohydrates. Each group underwent a 7 d intervention period with daily intake according to their designated group. Exercise performance was assessed using rotarod retention time test, and biomarkers of muscle damage, such as lactate dehydrogenase (LDH), creatine kinase (CK), lactate (LD), alanine aminotransferase (ALT), and non-esterified fatty acids (NEFA), were measured. Furthermore, targeted metabolomics analyses were conducted to investigate metabolic shifts in response to different dietary strategies, and KEGG pathway enrichment analysis was employed to explore the biological mechanisms underlying these changes. ResultsThe findings demonstrated that the HOT_PRO group exhibited a significantly improved performance in the rotarod test, with a longer retention time compared to both the HOT_MIX and HOT_CHO groups (P<0.05). Additionally, this group showed significantly reduced levels of muscle damage markers such as LDH and CK, indicating that the carbohydrate-later intake strategy helped alleviate exercise-induced muscle injury. Metabolomic profiling of the HOT_PRO group showed marked increases in alanine, creatine, and flavin adenine dinucleotide (FAD), indicating shifts in amino acid metabolism and oxidative metabolism. Conversely, metabolites such as spermidine, cholesterol sulfate, cholesterol, and serine were significantly reduced in the HOT_PRO group, pointing to alterations in lipid and sterol metabolism. Further analysis of the differential metabolites revealed that these changes were primarily associated with key metabolic pathways, including glycine-serine-threonine metabolism, primary bile acid biosynthesis, taurine and hypotaurine metabolism, and steroid hormone biosynthesis. These pathways are essential for energy production, antioxidant defense, and muscle recovery, suggesting that the carbohydrate-later feeding strategy may promote metabolic homeostasis and improve exercise recovery by enhancing these critical metabolic processes. ConclusionThe results of this study support the hypothesis that consuming carbohydrates after proteins and fats during exercise recovery enhances metabolic homeostasis and accelerates recovery under heat stress. This strategy effectively modulates energy, amino acid, and lipid-related pathways, which are crucial for improving endurance performance and mitigating fatigue in high-temperature environments. The findings suggest that carbohydrate-later intake could be a promising nutritional strategy for athletes and individuals exposed to heat during physical activity. Furthermore, the study provides valuable insights into how different nutrient timing strategies can impact exercise recovery and metabolic regulation, paving the way for more personalized and effective nutritional interventions in extreme environmental conditions.
2.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes.
3.Clinical characteristics and prognostic factors of young patients with sporadic rectal cancer liver metastasis
Yu GUAN ; Lei YANG ; Shi-Ru JIANG ; Wei-Dong DOU ; Jin-Gui WANG ; Shan-Wen CHEN ; Zhan-Bing LIU ; Ying-Chao WU
Medical Journal of Chinese People's Liberation Army 2024;49(1):23-30
Objective To identify the clinical characteristics and prognostic factors of young patients with sporadic rectal cancer liver metastasis(RCLM).Methods The clinical data of young RCLM patients at 45 years or under(n=40,as younger patient group)in Peking University First Hospital from January 2016 to January 2021 were reviewed,meanwhile,elder RCLM patient group were comprised of 82 patients older than 45-year-old in a 1:2 ratio.Proportions of categorical variables were compared between young patients and old patients.The clinicopathologic parameters were analyzed with univariate and multivariate Cox regression models and Kaplan-Meier method for demonstrating survival differences between the maximum diameter of liver metastasis and local therapy.Results One hundred and twenty-two RCLM patients were identified,the 1-,3-and 5-year survival rates of young patient group were 97.5%,47.5%,15.0%,those of elder patient group were 84.1%,26.8%,9.8%,respectively.The differences in BMI(P=0.008),primary tumor with obstruction and bleeding(P=0.006),synchronous rectal cancer liver metastases(P=0.005),the maximum diameter of liver metastasis>3 cm(P=0.019)were statistically significant between the two groups.And univariate and multivariate analyses showed that age(P=0.003),N stage(P=0.007),local therapy for liver metastases(P=0.047)and the maximum diameter of liver metastasis(P=0.030)were independent risk factors for influencing the prognosis of RCLM patients;curative resection or not of primary tumor(P=0.035)and the maximum diameter of liver metastasis(P=0.041)were independent risk factors for influencing the prognosis of young RCLM patients.Kaplan-Maier curve demonstrated survival differences between the maximum diameter of liver metastasis and local therapy for liver metastasis in RCLM patients(log-rank P=0.000).Conclusions Although with later staging of initial tumor station,young RCLM patients may obtain better survival benefit compared with old patients.Higher degree of lymph node metastasis,local therapy for liver metastases and the maximum diameter of liver metastasis>3 cm indicates poor prognosis in RCLM patients,and without curative resection of primary tumor and maximum diameter of liver metastasis are also considered as the independent poor prognostic factors of young RCLM patients.Local therapy for liver metastases appears to play an important role in the treatment strategy of RCLM patients.
4.Characteristics of T cell immune responses in adults inoculated with 2 doses of SARS-CoV-2 inactivated vaccine for 12 months
Jing WANG ; Ya-Qun LI ; Hai-Yan WANG ; Yao-Ru SONG ; Jing LI ; Wen-Xin WANG ; Lin-Yu WAN ; Chun-Bao ZHOU ; Xing FAN ; Fu-Sheng WANG
Medical Journal of Chinese People's Liberation Army 2024;49(2):165-170
Objective To evaluate the characteristics of different antigen-specific T cell immune responses to severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)after inoculation with 2 doses of SARS-CoV-2 inactivated vaccine for 12 months.Methods Fifteen healthy adults were enrolled in this study and blood samples collected at 12 months after receiving two doses of SARS-CoV-2 inactivated vaccine.The level and phenotypic characteristics of SARS-CoV-2 antigen-specific T lymphocytes were detected by activation-induced markers(AIM)based on polychromatic flow cytometry.Results After 12 months of inoculation with 2 doses of SARS-CoV-2 inactivated vaccine,more than 90%of adults had detectable Spike and Non-spike antigen-specific CD4+ T cells immune responses(Spike:14/15,P=0.0001;Non-spike:15/15,P<0.0001).80%of adults had detectable Spike and Non-spike antigen-specific CD8+ T cells immune responses(Spike:12/15,P=0.0463;Non-spike:12/15,P=0.0806).Antigen-specific CD4+ T cells induced by SARS-CoV-2 inactivated vaccination after 12 months were composed of predominantly central memory(CM)and effector memory 1(EM1)cells.On the other hand,in terms of helper subsets,antigen-specific CD4+ T cells mainly showed T helper 1/17(Th1/17)and T helper 2(Th2)phenotypes.Conclusions SARS-CoV-2 inactivated vaccination generates durable and extensive antigen-specific CD4+ T cell memory responses,which may be the key factor for the low proportion of severe coronavirus disease 2019(COVID-19)infection in China.
5.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
6.Risk control in phase Ⅰ clinical trials of macromolecular drugs
Wen-Jing BAI ; Juan WANG ; Yue LIU ; Ting-Ting WANG ; Ti-Ti WANG ; Ya-Ru WANG ; Yu-Ying YIN ; Xin WANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2424-2427
The author analyzed the characteristics of phase Ⅰ clinical trials of macromolecular drugs,the characteristics of evaluation indicators of phase Ⅰ clinical trials of macromolecular drugs,such as safety evaluation,pharmacokinetic and pharmacodynamic evaluation,and efficacy evaluation.And the control points of subjects management,management of experimental macromolecule drugs,and identified and potential risk factors of macromolecule drugs in the implementation of risk management for phase Ⅰ clinical trials of macromolecule drugs were discussed in depth based on previous clinical trial research experience.Through discussion and analysis,the author suggests that each research center can formulate risk control strategies according to the actual situation,improve the efficiency of risk control,and facilitate the smooth implementation of clinical trials and improve the quality of clinical trials.
7.Relationship between Phenotypic Changes of Dendritic Cell Subsets and the Onset of Plateau Phase during Intermittent Interferon Therapy in Patients with CHB
Liu YANG ; Yu Shi WANG ; Ting Ting JIANG ; Wen DENG ; Min CHANG ; Ling Shu WU ; Hua Wei CAO ; Yao LU ; Ge SHEN ; Yu Ru LIU ; Jiao Yuan GAO ; Jiao Meng XU ; Ping Lei HU ; Lu ZHANG ; Yao XIE ; Hui Ming LI
Biomedical and Environmental Sciences 2024;37(3):303-314
Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40,CD80,CD83,and CD86. Method This was a cross-sectional study in which patients were divided into a natural history group(namely NH group),a long-term oral nucleoside analogs treatment group(namely NA group),and a plateau-arriving group(namely P group).The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer. Results In total,143 patients were enrolled(NH group,n = 49;NA group,n = 47;P group,n = 47).The results demonstrated that CD141/CD1c double negative myeloid dendritic cell(DNmDC)/lymphocytes and monocytes(%)in P group(0.041[0.024,0.069])was significantly lower than that in NH group(0.270[0.135,0.407])and NA group(0.273[0.150,0.443]),and CD86 mean fluorescence intensity of DNmDCs in P group(1832.0[1484.0,2793.0])was significantly lower than that in NH group(4316.0[2958.0,5169.0])and NA group(3299.0[2534.0,4371.0]),Adjusted P all<0.001. Conclusion Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.
8.Association of Cytokines with Clinical Indicators in Patients with Drug-Induced Liver Injury
Hua Wei CAO ; Ting Ting JIANG ; Ge SHEN ; Wen DENG ; Yu Shi WANG ; Yu Zi ZHANG ; Xin Xin LI ; Yao LU ; Lu ZHANG ; Yu Ru LIU ; Min CHANG ; Ling Shu WU ; Jiao Yuan GAO ; Xiao Hong HAO ; Xue Xiao CHEN ; Ping Lei HU ; Jiao Meng XU ; Wei YI ; Yao XIE ; Hui Ming LI
Biomedical and Environmental Sciences 2024;37(5):494-502
Objective To explore characteristics of clinical parameters and cytokines in patients with drug-induced liver injury(DILI)caused by different drugs and their correlation with clinical indicators. Method The study was conducted on patients who were up to Review of Uncertainties in Confidence Assessment for Medical Tests(RUCAM)scoring criteria and clinically diagnosed with DILI.Based on Chinese herbal medicine,cardiovascular drugs,non-steroidal anti-inflammatory drugs(NSAIDs),anti-infective drugs,and other drugs,patients were divided into five groups.Cytokines were measured by Luminex technology.Baseline characteristics of clinical biochemical indicators and cytokines in DILI patients and their correlation were analyzed. Results 73 patients were enrolled.Age among five groups was statistically different(P=0.032).Alanine aminotransferase(ALT)(P=0.033)and aspartate aminotransferase(AST)(P=0.007)in NSAIDs group were higher than those in chinese herbal medicine group.Interleukin-6(IL-6)and tumor necrosis factor alpha(TNF-α)in patients with Chinese herbal medicine(IL-6:P<0.001;TNF-α:P<0.001)and cardiovascular medicine(IL-6:P=0.020;TNF-α:P=0.001)were lower than those in NSAIDs group.There was a positive correlation between ALT(r=0.697,P=0.025),AST(r=0.721,P=0.019),and IL-6 in NSAIDs group. Conclusion Older age may be more prone to DILI.Patients with NSAIDs have more severe liver damage in early stages of DILI,TNF-α and IL-6 may partake the inflammatory process of DILI.
9.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
10.Synthesis and characterization of matrix metalloproteinase-responsive BDNF controlled-release materials
Jun-Ru HEI ; Cui WANG ; Meng-Wen SONG ; Sheng-Qiang XIE ; Bing-Xian WANG ; Xiao-Juan LAN ; Han-Bo ZHANG ; Gang CHENG ; Zhi-Qiang LIU ; Xi-Qin YANG ; Jian-Ning ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(11):1319-1326
Objective To develop a matrix metalloproteinase(MMP)-responsive hyaluronic acid(HA)-based controlled-release material for brain-derived neurotrophic factor(BDNF)to provide a novel therapeutic strategy for intervention and repair of traumatic brain injury(TBI).Methods HA was modified with amination,followed by condensation with Suflo-SMCC carboxyl group to form amide,and then linked with glutathione(GSH)to synthesize HA-GSH.The recombinant glutathione S-transferase(GST)-tissue inhibitor of metalloproteinase(TIMP)-BDNF(GST-TIMP-BDNF)expression plasmid was constructed using molecular cloning technique with double enzyme digestion by Bam H Ⅰ and Eco R Ⅰ.The recombinant GST-TIMP-BDNF protein was expressed in the Escherichia coli prokaryotic expression system,and purified by ion exchange chromatography,confirmed by Western blotting.MMP diluents were supplemented with PBS,MMP inhibitor marimastat,and varing concentrations(0.4,0.6,0.8 mg/ml)of GST-TIMP-BDNF or GST-BDNF.MMP-2 activity was analyzed using an MMP activity detection kit to evaluate the inhibitory effect of the recombinant protein on MMP.Primary rat neurons were extracted and cultured to establish an iron death model induced by RSL3.The effect of recombinant protein GST-TIMP-BDNF on neuronal injury was detected by immunofluorescence staining.Results MRI hydrogen spectrum identification confirmed the successful synthesis of HA-GSH.Western blotting results showed the successful expression of the recombinant protein GST-TIMP-BDNF containing the GST tag using the E.coli prokaryotic expression system.MMP activity detection results indicated that the recombinant protein GST-TIMP-BDNF had a superior inhibitory effect on MMP-2 activity compared to GST-BDNF(P<0.05).Immunofluorescence staining results showed a significant increase in fluorescence intensity in rat neurons treated with GST-TIMP-BDNF after RSL3 induction(P<0.05).Conclusion A MMP-responsive HA-based BDNF controlled-release material has been successfully developed,exhibiting a protective effect on neuron damage.

Result Analysis
Print
Save
E-mail