1. Effect of menthol on hypobaric hypoxia-induced pulmonary arterial hypertension in mice and its mechanism
Wu-Shuai WANG ; Ying-Rong HE ; Xi YANG ; Qing-Hua DUAN ; Qiang WANG ; Wu-Shuai WANG ; Tao HU ; Ying-Rong HE ; Xi YANG ; Qing-Hua DUAN ; Xuan DU ; Qiang WANG ; Yao YANG ; Xuan DU
Chinese Pharmacological Bulletin 2024;40(1):62-69
Aim To study the effect of menthol on hypobaric hypoxia-induced pulmonary arterial hypertension and explore the underlying mechanism in mice. Methods 10 to 12 weeks old wild type (WT) mice and TRPM8 gene knockout (TRPM8
2.Preparation of soluble microneedle patch with fusion protein nanoparticles secreted by Mycobacterium tuberculosis and application of tuberculosis skin test
Fan CHEN ; Rong-sheng ZHU ; Jing ZHOU ; Yue HU ; Yun XUE ; Jian-hua KANG ; Wei WANG
Acta Pharmaceutica Sinica 2024;59(6):1804-1811
Rapid epidemiological screening for tuberculosis (TB) usually uses tuberculin pure protein derivative (PPD) skin test, which has limitations such as low specificity and high side effects. ESAT-6 and CFP-10 are secreted proteins of
3.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Different methods in predicting mortality of pediatric intensive care units sepsis in Southwest China
Rong LIU ; Zhicai YU ; Changxue XIAO ; Shufang XIAO ; Juan HE ; Yan SHI ; Yuanyuan HUA ; Jimin ZHOU ; Guoying ZHANG ; Tao WANG ; Jianyu JIANG ; Daoxue XIONG ; Yan CHEN ; Hongbo XU ; Hong YUN ; Hui SUN ; Tingting PAN ; Rui WANG ; Shuangmei ZHU ; Dong HUANG ; Yujiang LIU ; Yuhang HU ; Xinrui REN ; Mingfang SHI ; Sizun SONG ; Jumei LUO ; Juan LIU ; Juan ZHANG ; Feng XU
Chinese Journal of Pediatrics 2024;62(3):204-210
Objective:To investigate the value of systemic inflammatory response syndrome (SIRS), pediatric sequential organ failure assessment (pSOFA) and pediatric critical illness score (PCIS) in predicting mortality of pediatric sepsis in pediatric intensive care units (PICU) from Southwest China.Methods:This was a prospective multicenter observational study. A total of 447 children with sepsis admitted to 12 PICU in Southwest China from April 2022 to March 2023 were enrolled. Based on the prognosis, the patients were divided into survival group and non-survival group. The physiological parameters of SIRS, pSOFA and PCIS were recorded and scored within 24 h after PICU admission. The general clinical data and some laboratory results were recorded. The area under the curve (AUC) of the receiver operating characteristic curve was used to compare the predictive value of SIRS, pSOFA and PCIS in mortality of pediatric sepsis.Results:Amongst 447 children with sepsis, 260 patients were male and 187 patients were female, aged 2.5 (0.8, 7.0) years, 405 patients were in the survival group and 42 patients were in the non-survival group. 418 patients (93.5%) met the criteria of SIRS, and 440 patients (98.4%) met the criteria of pSOFA≥2. There was no significant difference in the number of items meeting the SIRS criteria between the survival group and the non-survival group (3(2, 4) vs. 3(3, 4) points, Z=1.30, P=0.192). The pSOFA score of the non-survival group was significantly higher than that of the survival group (9(6, 12) vs. 4(3, 7) points, Z=6.56, P<0.001), and the PCIS score was significantly lower than that of the survival group (72(68, 81) vs. 82(76, 88) points, Z=5.90, P<0.001). The predictive value of pSOFA (AUC=0.82) and PCIS (AUC=0.78) for sepsis mortality was significantly higher than that of SIRS (AUC=0.56) ( Z=6.59, 4.23, both P<0.001). There was no significant difference between pSOFA and PCIS ( Z=1.35, P=0.176). Platelet count, procalcitonin, lactic acid, albumin, creatinine, total bilirubin, activated partial thromboplastin time, prothrombin time and international normalized ratio were all able to predict mortality of sepsis to a certain degree (AUC=0.64, 0.68, 0.80, 0.64, 0.68, 0.60, 0.77, 0.75, 0.76, all P<0.05). Conclusion:Compared with SIRS, both pSOFA and PCIS had better predictive value in the mortality of pediatric sepsis in PICU.
6.Comparison of three dose verification methods in intensity modulated radiation therapy using PTW Detector729
Xiao-Hui WU ; Zu-Wen YAO ; Shan-Shan XU ; Tao-Hong LUO ; Xiao-Rong HU ; Yang YAO ; Xiao-Hua WANG
Chinese Medical Equipment Journal 2024;45(5):56-59
Objective To compare the three methods in intensity modulated radiation therapy(IMRT)dose verification using PTW Detector729.Methods A total of 50 patients with nasopharyngeal cancer,lung cancer,breast cancer,cervical cancer and whole brain radiation therapy who completed radiation treatment at some hospital from January to December 2022 were selected retrospectively.Two-dimensional(zero and actual gantry angles)and three-dimensional dose verifications were carried out for the IMRT plans using PTW Detector729 2D ionization chamber matrix combined with PTW RW3 solid water and PTW Ocavius 4D rotation unit.The dose assessment threshold was set to 10%,and the γ pass rates of the three verification methods were counted under four assessment criteria,namely 3%/1 mm,2%/2 mm,3%/2 mm and 3%/3 mm.SPSS 22.0 statistical software was used for data analysis.Results Under the 10%dose assessment threshold criterion,zero-gantry-angle 2D dose verification had the highest γ pass rate,and the differences were statistically significant(P<0.05);actual-gantry-angle 2D dose verification had the γ pass rate higher than that of 3D verification,and the differences were statistically significant(P<0.05).The γ pass rates of the three verification methods gradually increased under four criteria,namely,3%/1 mm,2%/2 mm,3%/2 mm and 3%/3 mm,and exceeded 90%under the 3%/2 mm criterion,and the results met the requirements of clinical radiotherapy.Conclusion The results of the three verification methods satisfy the requirements of the IMRT dose verification practice guidelines,and the selection of appropriate verification methods is of great significance to ensure the implementation of the treatment plan.[Chinese Medical Equipment Journal,2024,45(5):56-59]
7.Genetic Variation of SH2B3 in Patients with Myeloid Neoplasms
Qiang MA ; Rong-Hua HU ; Hong ZHAO ; Xiao-Xi LAN ; Yi-Xian GUO ; Xiao-Li CHANG ; Wan-Ling SUN ; Li SU ; Wu-Han HUI
Journal of Experimental Hematology 2024;32(4):1186-1190
Objective:To observe the genetic variation of SH2B3 in patients with myeloid neoplasms.Methods:The results of targeted DNA sequencing associated with myeloid neoplasms in the Department of Hematology,Xuanwu Hospital,Capital Medical University from November 2017 to November 2022 were retrospectively analyzed,and the patients with SH2B3 gene mutations were identified.The demographic and clinical data of these patients were collected,and characteristics of SH2B3 gene mutation,co-mutated genes and their correlations with diseases were analyzed.Results:The sequencing results were obtained from 1 005 patients,in which 19 patients were detected with SH2B3 gene mutation,including 18 missense mutations(94.74%),1 nonsense mutation(5.26%),and 10 patients with co-mutated genes(52.63%).Variant allele frequency(VAF)ranged from 0.03 to 0.66.The highest frequency mutation was p.Ile568Thr(5/19,26.32%),with an average VAF of 0.49,involving 1 case of MDS/MPN-RS(with SF3B1 mutation),1 case of MDS-U(with SF3B1 mutation),1 case of aplastic anemia with PNH clone(with PIGA and KMT2A mutations),2 cases of MDS-MLD(1 case with SETBP1 mutation).The other mutations included p.Ala567Thr in 2 cases(10.53%),p.Arg566Trp,p.Glu533Lys,p.Met437Arg,p.Arg425Cys,p.Glu314Lys,p.Arg308*,p.Gln294Glu,p.Arg282Gln,p.Arg175Gln,p.Gly86Cys,p.His55Asn and p.Gln54Pro in 1 case each.Conclusion:A wide distribution of genetic mutation sites and low recurrence of SH2B3 is observed in myeloid neoplasms,among of them,p.Ile568Thr mutation is detected with a higher incidence and often coexists with characteristic mutations of other diseases.
8.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
9.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
10.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.

Result Analysis
Print
Save
E-mail