2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Chemical constituents of Sophorae Flavescentis Radix and its residue based on UPLC-Q-TOF-MS.
Qian-Wen LIU ; Rong-Qing ZHU ; Qian-Nan HU ; Xiang LI ; Guang YANG ; Zi-Dong QIU ; Zhi-Lai ZHAN ; Tie-Gui NAN ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2025;50(3):708-718
Sophorae Flavescentis Radix is one of the commonly used traditional Chinese medicine in China, and a large amount of pharmaceutical residue generated during its processing and production is discarded as waste, which not only wastes resources but also pollutes the environment. Therefore, elucidating the chemical composition of the residue of Sophorae Flavescentis Radix and the differences between the residue and Sophorae Flavescentis Radix itself is of great significance for the comprehensive utilization of the residue. This study, based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) technology combined with multivariate statistical methods, provides a thorough characterization, identification, and differential analysis of the overall components of Sophorae Flavescentis Radix and its residue. Firstly, 61 compounds in Sophorae Flavescentis Radix were rapidly identified based on their precise molecular weight, fragment ions, and compound abundance, using a self-constructed compound database. Among them, 41 compounds were found in the residue, mainly alkaloids and flavonoids. Secondly, through principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA), 15 key compounds differentiating Sophorae Flavescentis Radix from its residue were identified. These included highly polar alkaloids, such as oxymatrine and oxysophocarpine, which showed significantly reduced content in the residue, and less polar flavonoids, such as kurarinone and kuraridin, which were more abundant in the residue. In summary, this paper clarifies the overall composition, structure, and content differences between Sophorae Flavescentis Radix and its residue, suggesting that the residue of Sophorae Flavescentis Radix can be used as a raw material for the extraction of its high-activity components, with promising potential for development and application in cosmetics and daily care. This research provides a scientific basis for the future comprehensive utilization of Sophorae Flavescentis Radix and its residue.
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Mass Spectrometry/methods*
;
Sophora/chemistry*
;
Flavonoids/chemistry*
;
Alkaloids/chemistry*
8.Research progress of unilateral biportal endoscopy technology in cervical degenerative disease.
Runmin TANG ; Lixian TAN ; Guoqiang LAI ; Limin RONG ; Liangming ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):495-503
OBJECTIVE:
To review the application and progress of unilateral biportal endoscopy (UBE) technology in the treatment of cervical degenerative diseases, and to provide reference for clinical treatment decisions.
METHODS:
The literature related to UBE technology in the treatment of cervical spondylotic radiculopathy (CSR) and cervical spondylotic myelopathy (CSM) at home and abroad was extensively reviewed, and the surgical methods, indications, effectiveness, and safety were analyzed and summarized.
RESULTS:
UBE technology is effective in the treatment of CSR and CSM, and has the advantages of good surgical field, reducing the injury of the posterior structure of the cervical spine, and protecting the facet joint process, but in general, the indications are relatively narrow, limited to single-segment or adjacent double-segment lesions, and the requirements for the operator are relatively high, and the learning curve is long.
CONCLUSION
UBE technology can be applied to the treatment of CSR and CSM, but it needs to be carried out by experienced UBE surgeons for specific cases.
Humans
;
Cervical Vertebrae/surgery*
;
Endoscopy/methods*
;
Radiculopathy/surgery*
;
Spondylosis/surgery*
;
Decompression, Surgical/methods*
;
Spinal Cord Diseases/surgery*
;
Treatment Outcome
9.Predictive value of bpMRI for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L.
Lai DONG ; Rong-Jie SHI ; Jin-Wei SHANG ; Zhi-Yi SHEN ; Kai-Yu ZHANG ; Cheng-Long ZHANG ; Bin YANG ; Tian-Bao HUANG ; Ya-Min WANG ; Rui-Zhe ZHAO ; Wei XIA ; Shang-Qian WANG ; Gong CHENG ; Li-Xin HUA
National Journal of Andrology 2025;31(5):426-431
Objective: The aim of this study is to explore the predictive value of biparametric magnetic resonance imaging(bpMRI)for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L and establish a nomogram. Methods: The imaging data and clinical data of 363 patients undergoing radical prostatectomy and pelvic lymph node dissection in the First Affiliated Hospital of Nanjing Medical University from July 2018 to December 2023 were retrospectively analyzed. Univariate analysis and multivariate logistic regression were used to screen independent risk factors for pelvic lymph node metastasis in prostate cancer, and a nomogram of the clinical prediction model was established. Calibration curves were drawn to evaluate the accuracy of the model. Results: Multivariate logistic regression analysis showed extrocapusular extension (OR=8.08,95%CI=2.62-24.97, P<0.01), enlargement of pelvic lymph nodes (OR=4.45,95%CI=1.16-17.11,P=0.030), and biopsy ISUP grade(OR=1.97,95%CI=1.12-3.46, P=0.018)were independent risk factors for pelvic lymph node metastasis. The C-index of the prediction model was 0.834, which indicated that the model had a good prediction ability. The actual value of the model calibration curve and the prediction probability of the model fitted well, indicating that the model had a good accuracy. Further analysis of DCA curve showed that the model had good clinical application value when the risk threshold ranged from 0.05 to 0.70.Conclusion: For prostate cancer patients with PSA≤20 μg/L, bpMRI has a good predictive value for the pelvic lymph node metastasis of prostate cancer with extrocapusular extension, enlargement of pelvic lymph nodes and ISUP grade≥4.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Nomograms
;
Prostate-Specific Antigen/blood*
;
Lymph Nodes/pathology*
;
Pelvis
;
Predictive Value of Tests
;
Prostatectomy
;
Lymph Node Excision
;
Risk Factors
;
Magnetic Resonance Imaging
;
Logistic Models
;
Middle Aged
;
Aged
10.Therapeutic effects and mechanisms of medical ozone on sepsis-associated kidney injury
Yaqi LUAN ; Xiaojie LIU ; Changlin SUN ; Wentao LIU ; Lai JIN ; Rong WANG
Journal of China Pharmaceutical University 2025;56(5):601-612
This study investigated the therapeutic effects and mechanisms of medical ozone on sepsis- associated kidney injury (S-AKI) induced by lipopolysaccharide in mice. Using enzyme-linked immunosorbent assay, renal histopathological evaluation, detection of renal function biochemical indicators, immunofluorescence staining, and Western blot analysis, the effects of intraperitoneal injection of ozone on inflammation, coagulation, and renal tissue in mice were systematically detected.The results demonstrated that ozone treatment significantly reduced circulating levels of the specific markers (citrullinated histone H3 and myeloperoxidase-DNA complexes) from neutrophil extracellular traps (NETs) in S-AKI mice, with a suppression on inflammatory and tissue factor expression in renal tissue. Furthermore, ozone effectively improved microcirculation dysfunction, reduced tubular damage and interstitial inflammatory infiltration, thereby alleviating pathological changes of kidneys of S-AKI mice. Mechanistic studies revealed that ozone enhances phagocytic clearance of tissue factor-rich microparticles (TF-MPs) by activating the 5'-monophosphate-activated protein kinase (AMPK) / scavenger receptor (SR)-A1 signaling pathway in macrophages. In Sr-a1-/- mice, renoprotective effect of ozone was completely abolished, confirming the critical role of SR-A1 in this mechanism. In summary, this study demonstrates that medical ozone promotes macrophage clearance of TF-NETs complexes through the AMPK/SR-A1 signaling axis, exerting dual protective effects on mice through anti-inflammatory action and microcirculation improvement, which provides novel intervention targets and therapeutic strategies for S-AKI treatment.

Result Analysis
Print
Save
E-mail