1.Progress in research of prophylactic therapy in contacts of rifampicin-resistant tuberculosis patients.
Zhan WANG ; Wen Jin WANG ; Xiao Yan DING ; Peng LU ; Li Mei ZHU ; Qiao LIU ; Wei LU
Chinese Journal of Epidemiology 2023;44(3):470-476
Tuberculosis (TB) prophylactic therapy for latent infection, which can reduce the risk for the development of active TB, is an important measure in TB control. China recommends prophylactic therapy for latent tuberculosis infection (LTBI) in some key populations to reduce the risk for TB. Contacts of patients with multi-drug and rifampicin-resistant TB (MDR/RR-TB) are at high risk for the infection with drug-resistant pathogen, however, no unified prophylactic therapy regimen has been recommended for LTBI due to exposure to MDR/RR-TB patients. This paper summarizes the current MDR/RR-TB prophylactic therapy regimen and its protection effect based on the results of the retrieval of literature, guidelines, expert consensus and technical specifications to provide reference for the prevention and control of LTBI.
Humans
;
Rifampin/therapeutic use*
;
Tuberculosis, Multidrug-Resistant/prevention & control*
;
Tuberculosis/drug therapy*
;
Latent Tuberculosis/chemically induced*
;
China
;
Antitubercular Agents/therapeutic use*
2.The past, present and future of tuberculosis treatment.
Kefan BI ; Dan CAO ; Cheng DING ; Shuihua LU ; Hongzhou LU ; Guangyu ZHANG ; Wenhong ZHANG ; Liang LI ; Kaijin XU ; Lanjuan LI ; Ying ZHANG
Journal of Zhejiang University. Medical sciences 2023;51(6):657-668
Tuberculosis (TB) is an ancient infectious disease. Before the availability of effective drug therapy, it had high morbidity and mortality. In the past 100 years, the discovery of revolutionary anti-TB drugs such as streptomycin, isoniazid, pyrazinamide, ethambutol and rifampicin, along with drug combination treatment, has greatly improved TB control globally. As anti-TB drugs were widely used, multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis emerged due to acquired genetic mutations, and this now presents a major problem for effective treatment. Genes associated with drug resistance have been identified, including katG mutations in isoniazid resistance, rpoB mutations in rifampin resistance, pncA mutations in pyrazinamide resistance, and gyrA mutations in quinolone resistance. The major mechanisms of drug resistance include loss of enzyme activity in prodrug activation, drug target alteration, overexpression of drug target, and overexpression of the efflux pump. During the disease process, Mycobacterium tuberculosis may reside in different microenvironments where it is expose to acidic pH, low oxygen, reactive oxygen species and anti-TB drugs, which can facilitate the development of non-replicating persisters and promote bacterial survival. The mechanisms of persister formation may include toxin-antitoxin (TA) modules, DNA protection and repair, protein degradation such as trans-translation, efflux, and altered metabolism. In recent years, the use of new anti-TB drugs, repurposed drugs, and their drug combinations has greatly improved treatment outcomes in patients with both drug-susceptible TB and MDR/XDR-TB. The importance of developing more effective drugs targeting persisters of Mycobacterium tuberculosis is emphasized. In addition, host-directed therapeutics using both conventional drugs and herbal medicines for more effective TB treatment should also be explored. In this article, we review historical aspects of the research on anti-TB drugs and discuss the current understanding and treatments of drug resistant and persistent tuberculosis to inform future therapeutic development.
Humans
;
Pyrazinamide/therapeutic use*
;
Isoniazid/therapeutic use*
;
Antitubercular Agents/therapeutic use*
;
Tuberculosis, Multidrug-Resistant/microbiology*
;
Mycobacterium tuberculosis/genetics*
;
Tuberculosis/drug therapy*
;
Rifampin/therapeutic use*
;
Mutation
;
Drug Resistance, Multiple, Bacterial/genetics*
3.Progress on diagnosis and treatment of latent tuberculosis infection.
Chiqing YING ; Chang HE ; Kaijin XU ; Yongtao LI ; Ying ZHANG ; Wei WU
Journal of Zhejiang University. Medical sciences 2023;51(6):691-696
One fourth of the global population has been infected with Mycobacterium tuberculosis, and about 5%-10% of the infected individuals with latent tuberculosis infection (LTBI) will convert to active tuberculosis (ATB). Correct diagnosis and treatment of LTBI are important in ending the tuberculosis epidemic. Current methods for diagnosing LTBI, such as tuberculin skin test (TST) and interferon-γ release assay (IGRA), have limitations. Some novel biomarkers, such as transcriptome derived host genes in peripheral blood cells, will help to distinguish LTBI from ATB. More emphasis should be placed on surveillance in high-risk groups, including patients with HIV infection, those using biological agents, organ transplant recipients and those in close contact with ATB patients. For those with LTBI, treatment should be based on the risk of progression to ATB and the potential benefit. Prophylactic LTBI regimens include isoniazid monotherapy for 6 or 9 months, rifampicin monotherapy for 4 months, weekly rifapentine plus isoniazid for 3 months (3HP regimen) and daily rifampicin plus isoniazid for 3 months (3HR regimen). The success of the one month rifapentine plus isoniazid daily regimen (1HP regimen) suggests the feasibility of an ultra-short treatment strategy although its efficacy needs further assessment. Prophylactic treatment of LTBI in close contact with MDR-TB patients is another challenge, and the regimens include new anti-tuberculosis drugs such as bedaquiline, delamanid, fluoroquinolone and their combinations, which should be carefully evaluated. This article summarizes the current status of diagnosis and treatment of LTBI and its future development direction.
Humans
;
Rifampin/therapeutic use*
;
Isoniazid/therapeutic use*
;
Latent Tuberculosis/drug therapy*
;
HIV Infections/epidemiology*
;
Antitubercular Agents/therapeutic use*
4.Clinical value of the MeltPro MTB assays in detection of drug-resistant tuberculosis in paraffin-embedded tissues.
Jia Lu CHE ; Zi Chen LIU ; Kun LI ; Wei Li DU ; Dan ZHAO ; Jing MU ; Yu Jie DONG ; Nan Ying CHE
Chinese Journal of Pathology 2023;52(5):466-471
Objective: To evaluate the clinical value of the MeltPro MTB assays in the diagnosis of drug-resistant tuberculosis. Methods: A cross-sectional study design was used to retrospectively collect all 4 551 patients with confirmed tuberculosis between January 2018 and December 2019 at Beijing Chest Hospital, Capital Medical University. Phenotypic drug sensitivity test and GeneXpert MTB/RIF (hereafter referred to as "Xpert") assay were used as gold standards to analyze the accuracy of the probe melting curve method. The clinical value of this technique was also evaluated as a complementary method to conventional assays of drug resistance to increase the detective rate of drug-resistant tuberculosis. Results: By taking the phenotypic drug susceptibility test as the gold standard, the sensitivity of the MeltPro MTB assays to detect resistance to rifampicin, isoniazid, ethambutol and fluoroquinolone was 14/15, 95.7%(22/23), 2/4 and 8/9,respectively; and the specificity was 92.0%(115/125), 93.2%(109/117), 90.4%(123/136) and 93.9%(123/131),respectively; the overall concordance rate was 92.1%(95%CI:89.6%-94.1%),and the Kappa value of the consistency test was 0.63(95%CI:0.55-0.72).By taking the Xpert test results as the reference, the sensitivity of this technology to the detection of rifampicin resistance was 93.6%(44/47), the specificity was100%(310/310), the concordance rate was 99.2%(95%CI:97.6%-99.7%), and the Kappa value of the consistency test was 0.96(95%CI:0.93-0.99). The MeltPro MTB assays had been used in 4 551 confirmed patients; the proportion of patients who obtained effective drug resistance results increased from 83.3% to 87.8%(P<0.01); and detection rate of rifampicin, isoniazid, ethambutol, fluoroquinolone resistance, multidrug and pre-extensive drug resistance cases were increased by 3.2%, 14.7%, 22.2%, 13.7%, 11.2% and 12.5%, respectively. Conclusion: The MeltPro MTB assays show satisfactory accuracy in the diagnosis of drug-resistant tuberculosis. This molecular pathological test is an effective complementary method in improving test positivity of drug-resistant tuberculosis.
Humans
;
Rifampin/therapeutic use*
;
Antibiotics, Antitubercular/therapeutic use*
;
Mycobacterium tuberculosis
;
Ethambutol/pharmacology*
;
Isoniazid/pharmacology*
;
Paraffin Embedding
;
Retrospective Studies
;
Cross-Sectional Studies
;
Drug Resistance, Bacterial
;
Sensitivity and Specificity
;
Tuberculosis, Multidrug-Resistant/drug therapy*
5.Analysis of changes in reporting and diagnosis of pulmonary tuberculosis among children in Liangshan Yi Autonomous Prefecture, Sichuan Province from 2019 to 2021.
Xiao Ran YU ; Shi Jin WANG ; Xue Mei YANG ; Min FANG ; Xi ZENG ; Hui QI ; Wei Wei JIAO ; Lin SUN
Chinese Journal of Preventive Medicine 2023;57(8):1153-1159
Objective: To compare the characteristics of children's pulmonary tuberculosis (PTB) cases reported from 2019 to 2021 before and during the implementation of the Action Plan to Stop Tuberculosis. Methods: Based on the reported incidence data and population data of child pulmonary tuberculosis (PTB) notified to the Chinese Center for Disease Control and Prevention (CDC) Tuberculosis Information Management System (TBIMS) from 2019 to 2021, the population information and clinically relevant information in different years were compared. Results: From 2019 to 2021, the reported cases of PTB in children were 363, 664 and 655, respectively. The number of reported cases increased significantly. The median age of the cases in children increased from 10.4 years in 2019 to 11.7 years in 2021 (P=0.005) over a three-year period. The etiological positive rate increased significantly from 11.6% (42/363) in 2019 to 32.2% (211/655) in 2021 (P<0.001). The positive rate of molecular testing increased most significantly, which became the main means of etiological detection and accounted for 16.7% (7/42), 62.0% (57/92) and 75.4% (159/211) of the children with positive etiological results, respectively. The resistance rates of isoniazid and rifampicin were analyzed in children with PTB who underwent drug sensitivity tests. The results showed that the resistance rates of isoniazid and/or rifampicin were 2/9, 3.9% (2/51) and 6.7% (11/163), respectively, with an average of 6.7% (15/223) over three years. The median patients' delay was 27 (12, 49) days in 2019. It was reduced to 19 (10, 37) days in 2020 and 15 (7, 34) days in 2021, both significantly lower than 2019 (P=0.009 and 0.000 2, respectively). Conclusion: From 2019 to 2021, the reported numbers of children with PTB and children with positive etiological results increase significantly in Liangshan Prefecture, while the diagnosis delay of patients significantly reduces.
Humans
;
Child
;
Rifampin/therapeutic use*
;
Isoniazid/therapeutic use*
;
Tuberculosis, Pulmonary/drug therapy*
;
Tuberculosis
;
China/epidemiology*
6.Analysis of changes in reporting and diagnosis of pulmonary tuberculosis among children in Liangshan Yi Autonomous Prefecture, Sichuan Province from 2019 to 2021.
Xiao Ran YU ; Shi Jin WANG ; Xue Mei YANG ; Min FANG ; Xi ZENG ; Hui QI ; Wei Wei JIAO ; Lin SUN
Chinese Journal of Preventive Medicine 2023;57(8):1153-1159
Objective: To compare the characteristics of children's pulmonary tuberculosis (PTB) cases reported from 2019 to 2021 before and during the implementation of the Action Plan to Stop Tuberculosis. Methods: Based on the reported incidence data and population data of child pulmonary tuberculosis (PTB) notified to the Chinese Center for Disease Control and Prevention (CDC) Tuberculosis Information Management System (TBIMS) from 2019 to 2021, the population information and clinically relevant information in different years were compared. Results: From 2019 to 2021, the reported cases of PTB in children were 363, 664 and 655, respectively. The number of reported cases increased significantly. The median age of the cases in children increased from 10.4 years in 2019 to 11.7 years in 2021 (P=0.005) over a three-year period. The etiological positive rate increased significantly from 11.6% (42/363) in 2019 to 32.2% (211/655) in 2021 (P<0.001). The positive rate of molecular testing increased most significantly, which became the main means of etiological detection and accounted for 16.7% (7/42), 62.0% (57/92) and 75.4% (159/211) of the children with positive etiological results, respectively. The resistance rates of isoniazid and rifampicin were analyzed in children with PTB who underwent drug sensitivity tests. The results showed that the resistance rates of isoniazid and/or rifampicin were 2/9, 3.9% (2/51) and 6.7% (11/163), respectively, with an average of 6.7% (15/223) over three years. The median patients' delay was 27 (12, 49) days in 2019. It was reduced to 19 (10, 37) days in 2020 and 15 (7, 34) days in 2021, both significantly lower than 2019 (P=0.009 and 0.000 2, respectively). Conclusion: From 2019 to 2021, the reported numbers of children with PTB and children with positive etiological results increase significantly in Liangshan Prefecture, while the diagnosis delay of patients significantly reduces.
Humans
;
Child
;
Rifampin/therapeutic use*
;
Isoniazid/therapeutic use*
;
Tuberculosis, Pulmonary/drug therapy*
;
Tuberculosis
;
China/epidemiology*
7.Accuracy of Xpert® MTB/RIF for the detection of tuberculosis and rifampicin-resistance tuberculosis in China: A systematic review and meta-analysis.
Jing Nan FENG ; Le GAO ; Yi Xin SUN ; Ji Chun YANG ; Si Wei DENG ; Feng SUN ; Si Yan ZHAN
Journal of Peking University(Health Sciences) 2020;53(2):320-326
OBJECTIVE:
To systematically review the diagnostic accuracy of Xpert® Mycobacterium tuberculosis/rifampicin (Xpert® MTB/RIF) for the detection of active tuberculosis (TB) and rifampicin-resistance TB in Chinese patients.
METHODS:
Four Chinese databases (SinoMed, CNKI, WanFang database, and VIP) and three English databases (PubMed, Embase, and The Cochrane Library) were searched from January 1, 2000 to September 15, 2017, to identify diagnostic tests about the accuracy of Xpert® MTB/RIF in Chinese patients. Two investigators screened the articles and extracted the information independently, and then the quality of each included study was evaluated by Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2. Bivariate random-effects meta-analysis was conducted to pool the sensitivity and specificity. In addition, subgroup analyses were performed based on patient type (TB patient and TB suspected patient), sample type (sputum, bronchoalveolar lavage fluid and others). All statistical analyses were conducted with Stata version 13.0.
RESULTS:
A total of 47 articles were included in this systematic review. Most of them (38 articles) were in Chinese and only 9 articles were in English. All the articles were published during 2014 to 2017, and the sample size ranged from 31 to 3 151. Forty articles including 42 comparisons about TB were finally included with the pooled sensitivity of 0.94 (95%CI: 0.92, 0.95) and the pooled specificity of 0.87 (95%CI: 0.84, 0.91). Subgroup analysis showed that different patient and specimen types had no significant differences on sensitivity, but the specificity of sputum group was higher than that of bronchoalveolar lavage fluid. As for the detection of rifampicin-resistant TB, 33 articles (38 comparisons) were analyzed, the pooled sensitivity and specificity were 0.92 (95%CI: 0.89, 0.94) and 0.98 (95%CI: 0.97, 0.99) respectively. There were no significant differences between the patient and specimen in the subgroup analyses. The Deeks funnel plot showed a possible publication bias for detecting active tuberculosis (P=0.08) and no publication bias for rifampicin-resistant TB (P=0.24). The likelihood ratio scatter gram showed that in clinical applications, Xpert® MTB/RIF had a good diagnostic ability for detecting active tuberculosis, and it had good clinical diagnostic value in detecting rifampicin-resistant TB.
CONCLUSION
Xpert® MTB/RIF has good sensitivity and specificity in detecting TB and rifampicin-resistant TB in Chinese people. In particular, it has good clinical value in diagnosing rifampicin-resistance TB.
Antibiotics, Antitubercular/therapeutic use*
;
China
;
Diagnostic Tests, Routine
;
Drug Resistance, Bacterial
;
Humans
;
Rifampin/pharmacology*
;
Sensitivity and Specificity
;
Tuberculosis/drug therapy*
;
Tuberculosis, Multidrug-Resistant/drug therapy*
;
Tuberculosis, Pulmonary/drug therapy*
8.Diagnostic accuracy of line probe assays for drug-resistant tuberculosis: a Meta-analysis.
Chinese Journal of Epidemiology 2018;39(11):1491-1495
Objective: To evaluate the diagnostic accuracy of line probe assays for drug- resistant tuberculosis (TB) in China. Methods: Chinese databases (CNKI, Wanfang, SinoMed, VIP Information) and English databases (PubMed, Embase, Cochrane Library) were used to retrieve the literatures regarding the accuracy of line probe assays in the diagnosis of drug-resistant tuberculosis in China between January 1, 2000 and September 1, 2017. Quality Assessment of Diagnostic Accuracy Studies-2 was used to evaluate the quality of the included studies. Sensitivity and specificity in different studies (using drug sensitivity test or gene sequencing as gold standard) were combined by Meta-analysis using bivariate or univariate model. In addition, subgroup analysis (GenoType MTBDRplus, GenoType MTBDRsl and Reverse dot blot hybridization) and sensitivity analysis were also carried out. Results: A total of 24 literatures involving 82 studies were included in the final analysis. The sensitivity and specificity of line probe assays for rifampicin resistant TB were 0.91(0.88-0.94) and 0.98 (0.97-0.99), respectively. The sensitivity and specificity of line probe assays for isoniazid resistant TB were 0.80 (0.77-0.83) and 0.98 (0.96-0.99), respectively. The sensitivity and specificity of line probe assays for multidrug-resistant TB were 0.81 (0.76-0.85) and 0.99 (0.99-1.00), respectively. The sensitivity and specificity of line probe assays for quinolone resistant TB were 0.92(0.88-0.95) and 0.94 (0.91-0.97), respectively. The sensitivity and specificity of line probe assays for second-line injectable drug resistant TB (including kanamycin, Capreomycin, amikacin) were 0.79(0.58-0.91) and 0.98 (0.90-1.00), respectively. The sensitivity and specificity of line probe assays for extensively drug-resistant TB were 0.46 (0.19-0.75) and 1.00 (0.98-1.00), respectively. Subgroup analysis showed that the overall diagnostic accuracy of GenoType MTBDRplus and GenoType MTBDRsl was higher than that of Reverse dot blot hybridization. According to the results of sensitivity analysis, the results of this study were robust. Conclusion: The diagnostic accuracy of line probe assays for drug-resistant TB is high.
Antitubercular Agents/therapeutic use*
;
Biological Assay/methods*
;
China
;
Humans
;
Isoniazid/pharmacology*
;
Microbial Sensitivity Tests/methods*
;
Mycobacterium tuberculosis/isolation & purification*
;
Rifampin/pharmacology*
;
Sensitivity and Specificity
;
Tuberculosis, Multidrug-Resistant/drug therapy*
9.Incidence and Clinical Outcomes of Clostridium difficile Infection after Treatment with Tuberculosis Medication.
Yu Mi LEE ; Kyu Chan HUH ; Soon Man YOON ; Byung Ik JANG ; Jeong Eun SHIN ; Hoon Sup KOO ; Yunho JUNG ; Sae Hee KIM ; Hee Seok MOON ; Seung Woo LEE
Gut and Liver 2016;10(2):250-254
BACKGROUND/AIMS: To determine the incidence and clinical characteristics of tuberculosis (TB) medication-associated Clostridium difficile infection. METHODS: This multicenter study included patients from eight tertiary hospitals enrolled from 2008 to 2013. A retrospective analysis was conducted to identify the clinical features of C. difficile infection in patients who received TB medication. RESULTS: C. difficile infection developed in 54 of the 19,080 patients prescribed TB medication, representing a total incidence of infection of 2.83 cases per 1,000 adults. Fifty-one of the 54 patients (94.4%) were treated with rifampin. The patients were usually treated with oral metronidazole, which produced improvement in 47 of the 54 patients (87%). Twenty-three patients clinically improved with continuous rifampin therapy for C. difficile infection. There were no significant differences in improvement between patients treated continuously (n=21) and patients in whom treatment was discontinued (n=26). CONCLUSIONS: The incidence of C. difficile infection after TB medication was not low considering the relatively low TB medication dosage compared to other antibiotics. It may not be always necessary to discontinue TB medication. Instead, decisions concerning discontinuation of TB medication should be based on TB status.
Adult
;
Aged
;
Aged, 80 and over
;
Anti-Infective Agents/therapeutic use
;
Antibiotics, Antitubercular/*adverse effects
;
*Clostridium difficile
;
Enterocolitis, Pseudomembranous/chemically induced/drug therapy/*epidemiology
;
Female
;
Humans
;
Incidence
;
Male
;
Metronidazole/therapeutic use
;
Middle Aged
;
Retrospective Studies
;
Rifampin/*adverse effects
;
Treatment Outcome
;
Tuberculosis/*drug therapy
10.First Case of Human Brucellosis Caused by Brucella melitensis in Korea.
Hyeong Nyeon KIM ; Mina HUR ; Hee Won MOON ; Hee Sook SHIM ; Hanah KIM ; Misuk JI ; Yeo Min YUN ; Sung Yong KIM ; Jihye UM ; Yeong Seon LEE ; Seon Do HWANG
Annals of Laboratory Medicine 2016;36(4):390-392
No abstract available.
Adult
;
Anti-Bacterial Agents/therapeutic use
;
Bacterial Proteins/chemistry/genetics/metabolism
;
Brucella melitensis/classification/genetics/*isolation & purification
;
Brucellosis/*diagnosis/drug therapy/microbiology
;
Doxycycline/therapeutic use
;
Humans
;
Magnetic Resonance Imaging
;
Male
;
Phylogeny
;
Polymerase Chain Reaction
;
Republic of Korea
;
Rifampin/therapeutic use
;
Sequence Analysis, DNA
;
Spondylitis/diagnostic imaging

Result Analysis
Print
Save
E-mail