1.Knockout of ribosomal genes bS22 and bL37 increases the sensitivity of mycobacteria to antibiotics.
Chan SHAN ; Qianwen YUE ; Xiaoming DING
Chinese Journal of Biotechnology 2022;38(3):1061-1073
In recent years, two novel proteins in the ribosomes of mycobacteria have been discovered by cryo-electron microscopy. The protein bS22 is located near the decoding center of the 30S subunit, and the protein bL37 is located near the peptidyl transferase center of the 50S subunit. Since these two proteins bind to conserved regions of the ribosome targeted by antibiotics, it is speculated that they might affect the binding of related drugs to these targets. Therefore, we knocked out the genes encoding these two proteins in wild-type Mycolicibacterium smegmatis mc2155 through homologous recombination, and then determined the growth curves of these mutants and their sensitivity to related antibiotics. The results showed that compared with the wild-type strain, the growth rate of these two mutants did not change significantly. However, mutant ΔbS22 showed increased sensitivity to capreomycin, kanamycin, amikacin, streptomycin, gentamicin, paromomycin, and hygromycin B, while mutant ΔbL37 showed increased sensitivity to linezolid. These changes in antibiotics sensitivity were restored by gene complementation. This study hints at the possibility of using ribosomal proteins bS22 and bL37 as targets for drug design.
Anti-Bacterial Agents/pharmacology*
;
Cryoelectron Microscopy
;
Mycobacterium/genetics*
;
Ribosomal Proteins/genetics*
;
Ribosomes/metabolism*
2.LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells.
Zhen SUN ; Hua YU ; Jing ZHAO ; Tianyu TAN ; Hongru PAN ; Yuqing ZHU ; Lang CHEN ; Cheng ZHANG ; Li ZHANG ; Anhua LEI ; Yuyan XU ; Xianju BI ; Xin HUANG ; Bo GAO ; Longfei WANG ; Cristina CORREIA ; Ming CHEN ; Qiming SUN ; Yu FENG ; Li SHEN ; Hao WU ; Jianlong WANG ; Xiaohua SHEN ; George Q DALEY ; Hu LI ; Jin ZHANG
Protein & Cell 2022;13(7):490-512
LIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28's role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.
Animals
;
Cell Differentiation
;
Embryo, Mammalian/metabolism*
;
Embryonic Development
;
Mice
;
Pluripotent Stem Cells/metabolism*
;
RNA, Messenger/genetics*
;
RNA, Ribosomal
;
RNA-Binding Proteins/metabolism*
;
Transcription Factors/metabolism*
;
Zygote/metabolism*
3.Ionizing Radiation-Induced RPL23a Reduction Regulates Apoptosis
Yu Xuan HE ; Yi Xiao GUO ; Yong ZHANG ; Jun Jie HU ; Wei Tao DONG ; Xiang Hong DU ; Xing Xu ZHAO
Biomedical and Environmental Sciences 2021;34(10):789-802
Objective:
The expression patterns of ribosomal large subunit protein 23a (RPL23a) in mouse testes and GC-1 cells were analyzed to investigate the potential relationship between RPL23a expression and spermatogonia apoptosis upon exposure to X-ray.
Methods:
Male mice and GC-1 cells were irradiated with X-ray, terminal dUTP nick end-labelling (TUNEL) was performed to detect apoptotic spermatogonia
Results:
Ionizing radiation (IR) increased spermatogonia apoptosis, the expression of RPL11, MDM2 and p53, and decreased RPL23a expression in mice spermatogonia
Conclusion
These results suggested that IR reduced RPL23a expression, leading to weakened the RPL23a-RPL11 interactions, which may have activated p53, resulting in spermatogonia apoptosis. These results provide insights into environmental and clinical risks of radiotherapy following exposure to IR in male fertility. The graphical abstract was available in the web of www.besjournal.com.
Animals
;
Apoptosis/genetics*
;
Gene Expression Regulation
;
Male
;
Mice
;
Ribosomal Proteins/metabolism*
;
Signal Transduction
;
Spermatogonia/radiation effects*
4.Analysis of the Vaginal Microbiome by Next-Generation Sequencing and Evaluation of its Performance as a Clinical Diagnostic Tool in Vaginitis.
Ki Ho HONG ; Sung Kuk HONG ; Sung Im CHO ; Eunkyung RA ; Kyung Hee HAN ; Soon Beom KANG ; Eui Chong KIM ; Sung Sup PARK ; Moon Woo SEONG
Annals of Laboratory Medicine 2016;36(5):441-449
BACKGROUND: Next-generation sequencing (NGS) can detect many more microorganisms of a microbiome than traditional methods. This study aimed to analyze the vaginal microbiomes of Korean women by using NGS that included bacteria and other microorganisms. The NGS results were compared with the results of other assays, and NGS was evaluated for its feasibility for predicting vaginitis. METHODS: In total, 89 vaginal swab specimens were collected. Microscopic examinations of Gram staining and microbiological cultures were conducted on 67 specimens. NGS was performed with GS junior system on all of the vaginal specimens for the 16S rRNA, internal transcribed spacer (ITS), and Tvk genes to detect bacteria, fungi, and Trichomonas vaginalis. In addition, DNA probe assays of the Candida spp., Gardnerella vaginalis, and Trichomonas vaginalis were performed. Various predictors of diversity that were obtained from the NGS data were analyzed to predict vaginitis. RESULTS: ITS sequences were obtained in most of the specimens (56.2%). The compositions of the intermediate and vaginitis Nugent score groups were similar to each other but differed from the composition of the normal score group. The fraction of the Lactobacillus spp. showed the highest area under the curve value (0.8559) in ROC curve analysis. The NGS and DNA probe assay results showed good agreement (range, 86.2-89.7%). CONCLUSIONS: Fungi as well as bacteria should be considered for the investigation of vaginal microbiome. The intermediate and vaginitis Nugent score groups were indistinguishable in NGS. NGS is a promising diagnostic tool of the vaginal microbiome and vaginitis, although some problems need to be resolved.
Area Under Curve
;
Bacteria/*genetics/isolation & purification
;
Bacterial Proteins/genetics
;
Candida/*genetics/isolation & purification
;
Female
;
Fungal Proteins/genetics
;
Gardnerella vaginalis/genetics/isolation & purification
;
High-Throughput Nucleotide Sequencing
;
Humans
;
*Microbiota
;
RNA, Ribosomal, 16S/chemistry/genetics/metabolism
;
ROC Curve
;
Sequence Analysis, DNA
;
Trichomonas vaginalis/genetics/isolation & purification
;
Vagina/*microbiology
;
Vaginitis/*diagnosis/microbiology
5.Identification of Acinetobacter Species Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.
Seri JEONG ; Jun Sung HONG ; Jung Ok KIM ; Keon Han KIM ; Woonhyoung LEE ; Il Kwon BAE ; Kyungwon LEE ; Seok Hoon JEONG
Annals of Laboratory Medicine 2016;36(4):325-334
BACKGROUND: Acinetobacter baumannii has a greater clinical impact and exhibits higher antimicrobial resistance rates than the non-baumannii Acinetobacter species. Therefore, the correct identification of Acinetobacter species is clinically important. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has recently become the method of choice for identifying bacterial species. The purpose of this study was to evaluate the ability of MALDI-TOF MS (Bruker Daltonics GmbH, Germany) in combination with an improved database to identify various Acinetobacter species. METHODS: A total of 729 Acinetobacter clinical isolates were investigated, including 447 A. baumannii, 146 A. nosocomialis, 78 A. pittii, 18 A. ursingii, 9 A. bereziniae, 9 A. soli, 4 A. johnsonii, 4 A. radioresistens, 3 A. gyllenbergii, 3 A. haemolyticus, 2 A. lwoffii, 2 A. junii, 2 A. venetianus, and 2 A. genomospecies 14TU. After 212 isolates were tested with the default Bruker database, the profiles of 63 additional Acinetobacter strains were added to the default database, and 517 isolates from 32 hospitals were assayed for validation. All strains in this study were confirmed by rpoB sequencing. RESULTS: The addition of the 63 Acinetobacter strains' profiles to the default Bruker database increased the overall concordance rate between MALDI-TOF MS and rpoB sequencing from 69.8% (148/212) to 100.0% (517/517). Moreover, after library modification, all previously mismatched 64 Acinetobacter strains were correctly identified. CONCLUSIONS: MALDI-TOF MS enables the prompt and accurate identification of clinically significant Acinetobacter species when used with the improved database.
Acinetobacter Infections/*microbiology/pathology
;
Acinetobacter baumannii/*chemistry/classification/isolation & purification
;
Bacterial Proteins/chemistry/genetics/metabolism
;
Databases, Factual
;
Humans
;
Phylogeny
;
RNA, Ribosomal, 16S/chemistry/genetics/metabolism
;
*Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.Effect of ribosome engineering on butenyl-spinosyns synthesis of Saccharopolyspora pogona.
Lin'gen LUO ; Yan YANG ; Hui WEI ; Jie RANG ; Qiong TANG ; Shengbiao HU ; Yunjun SUN ; Ziquan YU ; Xuezhi DING ; Liqiu XIA
Chinese Journal of Biotechnology 2016;32(2):259-263
Through introducing mutations into ribosomes by obtaining spontaneous drug resistance of microorganisms, ribosome engineering technology is an effective approach to develop mutant strains that overproduce secondary metabolites. In this study, ribosome engineering was used to improve the yield of butenyl-spinosyns produced by Saccharopolyspora pogona by screening streptomycin resistant mutants. The yields of butenyl-spinosyns were then analyzed and compared with the parent strain. Among the mutants, S13 displayed the greatest increase in the yield of butenyl-spinosyns, which was 1.79 fold higher than that in the parent strain. Further analysis of the metabolite profile of S13 by mass spectrometry lead to the discovery of Spinosyn α1, which was absent from the parent strain. DNA sequencing showed that there existed two point mutations in the conserved regions of rpsL gene which encodes ribosomal protein S12 in S13. The mutations occurred a C to A and a C to T transversion mutations occurred at nucleotide pair 314 and 320 respectively, which resulted in the mutations of Proline (105) to Gultamine and Alanine (107) to Valine. It also demonstrated that S13 exhibited genetic stability even after five passages.
Genetic Engineering
;
Macrolides
;
metabolism
;
Point Mutation
;
Ribosomal Proteins
;
genetics
;
Ribosomes
;
metabolism
;
Saccharopolyspora
;
metabolism
7.Screening of drug resistent gene by cyclical packaging rescue of hepatocellular carcinoma retroviral cDNA libraries.
Wenyan DAI ; Ruiyu ZHU ; Jian JIN
Chinese Journal of Biotechnology 2016;32(2):204-211
Multidrug resistant genes are highly expressed in hepatocellular carcinoma that seriousty affects the effect of chemotherapy. Screening of resistant genes from HCC cells and studying its mechanism of drug resistance will be helpful to improve the effecacy of chemotherapy for hepatocellular carcinoma. Here we described an alternative method called cyclical packaging rescue (CPR). First we constructed a retrovirus cDNA library of hepatoma cells and used it to infect fibroblasts. Then we added drugs to screen survival cells. The survival cells, stably integrated helper-free retroviral libraries, were recovered rapidly after transfection with plasmids expressing retroviral gag-pol and env genes. Through this method, retroviral RNAs were directly repackaged into new infectious virions. Recovered retroviral supernatant was then used to reinfect fresh target cells. When performed in concert with selection using functional assays, cDNAs regulating functional responses could be identified by enrichment through multiple rounds of retroviral library recovery and retransmission. Using CPR, we obtained several cDNAs. After a preliminary detection, we found Ribosomal protein S11 (RPS11), Ribosomal protein L6 (RPL6), Ribosomal protein L11 (RPL11), Ribosomal protein L24 (RPL24) possibly had drug resistant function.
Carcinoma, Hepatocellular
;
genetics
;
pathology
;
Cell Line, Tumor
;
DNA, Complementary
;
Drug Resistance, Neoplasm
;
genetics
;
Gene Library
;
Genetic Vectors
;
Humans
;
Liver Neoplasms
;
genetics
;
pathology
;
Plasmids
;
Retroviridae
;
Ribosomal Proteins
;
genetics
;
metabolism
;
Transfection
9.The Emergence of the 16S rRNA Methyltransferase RmtB in a Multidrug-Resistant Serratia marcescens Isolate in China.
Xue Jiao MA ; Hai Fei YANG ; Yan Yan LIU ; Qing MEI ; Ying YE ; Hong Ru LI ; Jun CHENG ; Jia Bin LI
Annals of Laboratory Medicine 2015;35(1):172-174
No abstract available.
Aged, 80 and over
;
Anti-Bacterial Agents/pharmacology
;
Bacterial Proteins/*genetics
;
China
;
Drug Resistance, Multiple, Bacterial
;
Humans
;
Male
;
Methyltransferases/*genetics
;
Microbial Sensitivity Tests
;
RNA, Ribosomal, 16S/genetics/metabolism
;
Serratia marcescens/drug effects/*enzymology/*genetics/isolation & purification
;
Urinary Tract Infections/diagnosis/microbiology
10.Ribosomal protein mutations in Korean patients with Diamond-Blackfan anemia.
Hyojin CHAE ; Joonhong PARK ; Seungok LEE ; Myungshin KIM ; Yonggoo KIM ; Jae Wook LEE ; Nack Gyun CHUNG ; Bin CHO ; Dae Chul JEONG ; Jiyeon KIM ; Jung Rok KIM ; Geon PARK
Experimental & Molecular Medicine 2014;46(3):e88-
Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by hypoproliferative anemia, associated physical malformations and a predisposition to cancer. DBA has been associated with mutations and deletions in the large and small ribosomal protein genes, and genetic aberrations have been detected in approximately50-60% of patients. In this study, nine Korean DBA patients were screened for mutations in eight known DBA genes (RPS19, RPS24, RPS17, RPS10, RPS26, RPL35A, RPL5 and RPL11) using the direct sequencing method. Mutations in RPS19, RPS26 and RPS17 were detected in four, two and one patient, respectively. Among the mutations detected in RPS19, two mutations were novel (c.26T>A, c.357-2A>G). For the mutation-negative cases, array-CGH analysis was performed to identify copy-number variations, and no deletions involving the known DBA gene regions were identified. The relative mRNA expression of RPS19 estimated using real-time quantitative PCR analysis revealed two- to fourfold reductions in RPS19 mRNA expression in three patients with RPS19 mutations, and p53 protein expression analysis by immunohistochemistry showed variable but significant nuclear staining in the DBA patients. In conclusion, heterozygous mutations in the known DBA genes RPS19, RPS26 and RPS17 were detected in seven out of nine Korean DBA patients. Among these patients, RPS19 was the most frequently mutated gene. In addition, decreased RPS19 mRNA expression and p53 overexpression were observed in the Korean DBA patients, which supports the hypothesis that haploinsufficiency and p53 hyperactivation represent a central pathway underlying the pathogenesis of DBA.
Anemia, Diamond-Blackfan/*genetics
;
Female
;
Gene Frequency
;
Humans
;
Infant, Newborn
;
Male
;
*Mutation
;
RNA, Messenger/genetics/metabolism
;
Republic of Korea
;
Ribosomal Proteins/*genetics/metabolism
;
Tumor Suppressor Protein p53/genetics/metabolism

Result Analysis
Print
Save
E-mail