1.Ethyl Acetate Fraction of Dicliptera chinensis (L.) Juss. Ameliorates Liver Fibrosis by Inducing Autophagy via PI3K/AKT/mTOR/p70S6K Signaling Pathway.
Yuan LIU ; Yan-Meng BI ; Ting PAN ; Ting ZENG ; Chan MO ; Bing SUN ; Lei GAO ; Zhi-Ping LYU
Chinese journal of integrative medicine 2022;28(1):60-68
OBJECTIVE:
To investigate the molecular mechanism underlying the anti-hepatic fibrosis activity of ethyl acetate fraction Dicliptera chinensis (L.) Juss. (EDC) in human hepatic stellate cells (HSCs) in vitro and in a carbon tetrachloride (CCl4)-induced hepatic fibrosis mouse model in vivo.
METHODS:
For in vitro study, HSCs were pre-treated with platelet-derived growth factor (10 ng/mL) for 2 h to ensure activation and treated with EDC for 24 h and 48 h, respectively. The effect of EDC on HSCs was assessed using cell counting kit-8 assay, EdU staining, transmission electron microscopy, immunofluorescence staining, and Western blot, respectively. For in vivo experiments, mice were intraperitoneally injected with CCl4 (2 ° L/g, adjusted to a 25% concentration in olive oil), 3 times per week for 6 weeks, to develop a hepatic fibrosis model. Forty 8-week-old male C57BL/6 mice were divided into 4 groups using a random number table (n=10), including control, model, positive control and EDC treatment groups. Mice in the EDC and colchicine groups were intragastrically administered EDC (0.5 g/kg) or colchicine (0.2 mg/kg) once per day for 6 weeks. Mice in the control and model groups received an equal volume of saline. Biochemical assays and histological examinations were used to assess liver damage. Protein expression levels of α -smooth muscle actin (α -SMA) and microtubule-associated protein light chain 3B (LC3B) were measured by Western blot.
RESULTS:
EDC reduced pathological damage associated with liver fibrosis, downregulated the expression of α -SMA and upregulated the expression of LC3B (P<0.05), both in HSCs and the CCl4-induced liver fibrosis mouse model. The intervention of bafilomycin A1 and rapamycin in HSCs strongly supported the notion that inhibition of autophagy enhanced α -SMA protein expression levels (P<0.01). The results also found that the levels of phosphoinositide (PI3K), p-PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, and p-p70S6K all decreased after EDC treatment (P<0.05).
CONCLUSIONS
EDC has anti-hepatic fibrosis activity by inducing autophagy and might be a potential drug to be further developed for human liver fibrosis therapy.
Acetates
;
Animals
;
Autophagy
;
Carbon Tetrachloride
;
Hepatic Stellate Cells
;
Liver/pathology*
;
Liver Cirrhosis/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Ribosomal Protein S6 Kinases, 70-kDa
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
2.Effect of moxibustion on autophagy in mice with Alzheimer's disease based on mTOR/p70S6K signaling pathway.
Yang-Yang WU ; Xiao-Ge SONG ; Cai-Feng ZHU ; Sheng-Chao CAI ; Xia GE ; Ling WANG ; Yu-Mei JIA
Chinese Acupuncture & Moxibustion 2022;42(9):1011-1016
OBJECTIVE:
To investigate the effect of moxibustion on autophagy and amyloid β-peptide1-42 (Aβ1-42) protein expression in amyloid precursor protein/presenilin 1 (APP/PS1) double-transgenic mice with Alzheimer's disease (AD).
METHODS:
After 2-month adaptive feeding, fifty-six 6-month-old APP/PS1 double transgenic AD mice were randomly divided into a model group, a moxibustion group, a rapamycin group and an inhibitor group, 14 mice in each group. Another 14 C57BL/6J mice with the same age were used as a normal group. The mice in the moxibustion group were treated with monkshood cake-separated moxibustion at "Baihui"(GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14) for 20 min; the mice in the rapamycin group were intraperitoneally injected with rapamycin (2 mg/kg); the mice in the inhibitor group were treated with moxibustion and injection of 1.5 mg/kg 3-methyladenine (3-MA). All the treatments were given once a day for consecutive 2 weeks. The morphology of hippocampal tissue was observed by HE staining; the ultrastructure of hippocampal tissue was observed by transmission electron microscopy; the expression of Aβ1-42 protein in frontal cortex and hippocampal tissue was detected by immunohistochemistry; the expressions of mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), p70 ribosomal protein S6 kinase (p70S6K) and phosphorylated p70S6K (p-p70S6K) protein in hippocampus were detected by Western blot method.
RESULTS:
Compared with the normal group, the number of neuron cells was decreased, cells were necrotic and deformed, and autophagy vesicle and lysosome were decreased in the model group. Compared with the model group, the number of neuron cells was increased, cell necrosis was decreased, and autophagy vesicle and lysosome were increased in the moxibustion group and the rapamycin group. Compared with the normal group, the protein expressions of Aβ1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the model group were increased (P<0.05); compared with the model group, the protein expressions of Aβ1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group, rapamycin group and inhibitor group were decreased (P<0.05); compared with the inhibitor group, the protein expressions of Aβ1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group and rapamycin group were decreased (P<0.05); compared with the rapamycin group, the protein expressions of mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group were decreased (P<0.05).
CONCLUSION
Moxibustion could enhance autophagy in hippocampal tissue of APP/PS1 double transgenic AD mice and reduce abnormal Aβ aggregation in brain tissue, the mechanism may be related to the inhibition of mTOR/p70S6K signaling pathway.
Alzheimer Disease/therapy*
;
Amyloid beta-Peptides/genetics*
;
Animals
;
Autophagy
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Mammals/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Moxibustion
;
Ribosomal Protein S6 Kinases, 70-kDa/pharmacology*
;
Signal Transduction
;
Sirolimus/pharmacology*
;
TOR Serine-Threonine Kinases/metabolism*
3.Effect of eIF4B knockout on apoptosis of mouse fetal liver cells.
Guoqing WANG ; Biao CHEN ; Yuhai CHEN ; Qianwen ZHU ; Min PENG ; Guijie GUO ; Jilong CHEN
Chinese Journal of Biotechnology 2022;38(9):3489-3500
Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro, but the in vivo function is poorly understood. In this study, via various experimental techniques such as hematoxylin-eosin (HE) staining, flow cytometry, Western blotting, and immunohistochemistry, we investigated the role of eIF4B in mouse embryo development using an eIF4B knockout (KO) mouse model and explored the mechanism. We found that the livers, but not lungs, brain, stomach, or pancreas, derived from eIF4B KO mouse embryos displayed severe pathological changes characterized by enhanced apoptosis and necrosis. Accordingly, high expression of cleaved-caspase 3, and excessive activation of mTOR signaling as evidenced by increased expression and phosphorylation of p70S6K and enhanced phosphorylation of 4EBP1, were observed in mouse embryonic fibroblasts and fetal livers from eIF4B KO mice. These results uncover a critical role of eIF4B in mouse embryo development and provide important insights into the biological functions of eIF4B in vivo.
Animals
;
Apoptosis/genetics*
;
Caspase 3
;
Eosine Yellowish-(YS)
;
Eukaryotic Initiation Factors/metabolism*
;
Fibroblasts
;
Hematoxylin
;
Liver/metabolism*
;
Mice
;
Ribosomal Protein S6 Kinases, 70-kDa/genetics*
;
TOR Serine-Threonine Kinases
4.Effects of rosuvastatin in homocysteine induced mouse vascular smooth muscle cell dedifferentiation and endoplasmic reticulum stress and its mechanisms.
Chang-Zuan ZHOU ; Sun-Lei PAN ; Hui LIN ; Li-Ping MENG ; Zheng JI ; Ju-Fang CHI ; Hang-Yuan GUO
Chinese Journal of Applied Physiology 2018;34(1):43-48
OBJECTIVE:
To investigate the effect of rosuvastatin on homocysteine (Hcy) induced mousevascular smooth muscle cells(VSMCs) dedifferentiation and endoplasmic reticulum stress(ERS).
METHODS:
VSMCs were co-cultured with Hcy and different concentration of rosuvastatin (0.1, 1.0 and 10 μmol/L). Cytoskeleton remodeling, VSMCs phenotype markers (smooth muscle actin-α, calponin and osteopontin) and ERS marker mRNAs (Herpud1, XBP1s and GRP78) were detected at predicted time. Tunicamycin was used to induce, respectively 4-phenylbutyrate(4-PBA) inhibition, ERS in VSMCs and cellular migration, proliferation and expression of phenotype proteins were analyzed. Mammalian target of rapamycin(mTOR)-P70S6 kinase (P70S6K) signaling agonist phosphatidic acid and inhibitor rapamycin were used in Rsv treated VSMCs. And then mTOR signaling and ERS associated mRNAs were detected.
RESULTS:
Compared with Hcy group, Hcy+ Rsv group (1.0 and 10 μmol/L) showed enhanced α-SMA and calponin expression (<0.01), suppressed ERS mRNA levels (<0.01) and promoted polarity of cytoskeleton. Compared with Hcy group, Hcy+Rsv group and Hcy+4-PBA group showed suppressed proliferation, migration and enhanced contractile protein expression (<0.01); while tunicamycin could reverse the effect of Rsv on Hcy treated cells. Furthermore, alleviated mTOR-P70S6K phosphorylation and ERS (<0.01)were observed in Hcy+Rsv group and Hcy+rapamycin group, compared with Hcy group; while phosphatidic acid inhibited the effect of Rsv on mTOR signaling activation and ERS mRNA levels (<0.01).
CONCLUSIONS
Rosuvastatin could inhibit Hcy induced VSMCs dedifferentiation suppressing ERS, which might be regulated by mTOR-P70S6K signaling.
Actins
;
metabolism
;
Animals
;
Calcium-Binding Proteins
;
metabolism
;
Cell Dedifferentiation
;
drug effects
;
Cells, Cultured
;
Endoplasmic Reticulum Stress
;
drug effects
;
Heat-Shock Proteins
;
metabolism
;
Homocysteine
;
Membrane Proteins
;
metabolism
;
Mice
;
Microfilament Proteins
;
metabolism
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
cytology
;
drug effects
;
Ribosomal Protein S6 Kinases, 70-kDa
;
metabolism
;
Rosuvastatin Calcium
;
pharmacology
;
TOR Serine-Threonine Kinases
;
metabolism
;
X-Box Binding Protein 1
;
metabolism
5.Effect of rapamycin on proliferation of rat heart valve interstitial cells in vitro.
Yan TAN ; Ji-Ye WANG ; Ren-Liang YI ; Jian QIU
Journal of Southern Medical University 2016;36(4):572-576
OBJECTIVETo investigate the effect of rapamycin on the proliferation of rat valvular interstitial cells in primary culture.
METHODSThe interstitial cells isolated from rat aortic valves were cultured and treated with rapamycin, and the cell growth and cell cycle changes were analyzed using MTT assay and flow cytometry, respectively. RT-PCR was used to detect mRNA expression levels of S6 and P70S6K in cells, and the protein expressions level of S6, P70S6K, P-S6, and P-P70S6K were detected using Western blotting.
RESULTSRat aortic valvular interstitial cells was isolated successfully. The rapamycin-treated cells showed a suppressed proliferative activity (P<0.05), but the cell cycle distribution remained unaffected. Rapamycin treatment resulted in significantly decreased S6 and P70S6K protein phosphorylation level in the cells (P<0.05).
CONCLUSIONThe mechanism by which rapamycin inhibits the proliferation of valvular interstitial cells probably involves suppression of mTOR to lower S6 and P70S6K phosphorylation level but not direct regulation of the cell cycle.
Animals ; Blotting, Western ; Cell Cycle ; Cell Proliferation ; drug effects ; Cells, Cultured ; Heart Valves ; cytology ; Phosphorylation ; Rats ; Ribosomal Protein S6 Kinases, 70-kDa ; metabolism ; Sirolimus ; pharmacology
6.P70S6 kinase phosphorylation: a new site to assess pharmacodynamy of sirolimus.
Chinese Medical Journal 2015;128(5):664-669
BACKGROUNDThe phosphorylation of p70S6 kinase (p70S6K) represents an important target for sensitive detection on pharmacodynamic effects of sirolimus, but the methods of assessing p70S6K phosphorylation are still unclear. The aim of this study was to investigate p70S6K phosphorylation located down-stream of the mammalian target of rapamycin (mTOR) pathway in peripheral blood mononuclear cells (PBMCs) of liver transplant patients through different methods.
METHODSSeventy-five liver transplant recipients from Beijing Chaoyang Hospital of the Capital Medical University were analyzed in this study. Patients were divided into three groups, patient treated with sirolimus (n = 22), patient treated with tacrolimus (n = 30), patient treated with cyclosporine (n = 23). The p70S6K phosphorylation of PBMCs in patients and healthy control (HC, n = 12) were analyzed by phospho-flow cytometry and Western blotting. A correlation analysis of data from phospho-flow cytometry and Western blotting was performed. Intra-assay variability of p70S6K phosphorylation in HC and different patients were measured.
RESULTSIntra-assay variability of p70S6K phosphorylation in phospho-flow cytometry was from 4.1% to 8.4% and in Western blotting was from 8.2% to 18%. The p70S6K phosphorylation in patients receiving a sirolimus (19.5 ± 7.7) was significantly lower than in HC (50.1 ± 11.3, P < 0.001), tacrolimus (37.7 ± 15.7, P < 0.001) or cyclosporine treated patients (41.7 ± 11.7, P < 0.001). The p70S6K phosphorylation in HC (50.1 ± 11.3) was significantly higher than in tacrolimus (37.7 ± 15.7, P < 0.01) or cyclosporine-treated patients (41.7 ± 11.7, P < 0.01). There was correlation between data from phospho-flow cytometry and data from Western blotting (r = 0.88, P < 0.001).
CONCLUSIONSThe degree of mTOR inhibition by assessing p70S6K phosphorylation was established by phospho-flow cytometry and Western blotting. Assessment of p70S6K phosphorylation may play an adjunct role to on pharmacodynamically guide and individualize sirolimus based on immunosuppression.
Adolescent ; Adult ; Aged ; Blotting, Western ; Cyclosporine ; pharmacokinetics ; therapeutic use ; Female ; Flow Cytometry ; Humans ; Immunosuppressive Agents ; pharmacokinetics ; therapeutic use ; Leukocytes, Mononuclear ; enzymology ; Liver Transplantation ; Male ; Middle Aged ; Phosphorylation ; Ribosomal Protein S6 Kinases, 70-kDa ; metabolism ; Sirolimus ; pharmacokinetics ; therapeutic use ; Tacrolimus ; pharmacokinetics ; therapeutic use ; Young Adult
7.P70S6K and Elf4E Dual Inhibition Is Essential to Control Bladder Tumor Growth and Progression in Orthotopic Mouse Non-muscle Invasive Bladder Tumor Model.
Byung Hoon CHI ; Soon Ja KIM ; Ho Kyung SEO ; Hye Hyun SEO ; Sang Jin LEE ; Jong Kyou KWON ; Tae Jin LEE ; In Ho CHANG
Journal of Korean Medical Science 2015;30(3):308-316
We investigated how the dual inhibition of the molecular mechanism of the mammalian target of the rapamycin (mTOR) downstreams, P70S6 kinase (P70S6K) and eukaryotic initiation factor 4E (eIF4E), can lead to a suppression of the proliferation and progression of urothelial carcinoma (UC) in an orthotopic mouse non-muscle invasive bladder tumor (NMIBT) model. A KU-7-luc cell intravesically instilled orthotopic mouse NMIBC model was monitored using bioluminescence imaging (BLI) in vivo by interfering with different molecular components using rapamycin and siRNA technology. We then analyzed the effects on molecular activation status, cell growth, proliferation, and progression. A high concentration of rapamycin (10 microM) blocked both P70S6K and elF4E phosphorylation and inhibited cell proliferation in the KU-7-luc cells. It also reduced cell viability and proliferation more than the transfection of siRNA against p70S6K or elF4E. The groups with dual p70S6K and elF4E siRNA, and rapamycin reduced tumor volume and lamina propria invasion more than the groups with p70S6K or elF4E siRNA instillation, although all groups reduced photon density compared to the control. These findings suggest that both the mTOR pathway downstream of eIF4E and p70S6K can be successfully inhibited by high dose rapamycin only, and p70S6K and Elf4E dual inhibition is essential to control bladder tumor growth and progression.
Animals
;
Cell Line
;
Cell Proliferation/drug effects/genetics
;
Cell Survival/drug effects
;
Disease Progression
;
Eukaryotic Initiation Factor-4E/*antagonists & inhibitors/genetics
;
Female
;
Mice
;
Mice, Nude
;
Mucous Membrane/pathology
;
Phosphorylation/drug effects
;
RNA Interference
;
RNA, Small Interfering
;
Ribosomal Protein S6 Kinases, 70-kDa/*antagonists & inhibitors/genetics
;
Signal Transduction/drug effects
;
Sirolimus/*pharmacology
;
TOR Serine-Threonine Kinases/*antagonists & inhibitors/metabolism
;
Urinary Bladder Neoplasms/genetics/*pathology
;
Urothelium/pathology
8.P70S6K and Elf4E Dual Inhibition Is Essential to Control Bladder Tumor Growth and Progression in Orthotopic Mouse Non-muscle Invasive Bladder Tumor Model.
Byung Hoon CHI ; Soon Ja KIM ; Ho Kyung SEO ; Hye Hyun SEO ; Sang Jin LEE ; Jong Kyou KWON ; Tae Jin LEE ; In Ho CHANG
Journal of Korean Medical Science 2015;30(3):308-316
We investigated how the dual inhibition of the molecular mechanism of the mammalian target of the rapamycin (mTOR) downstreams, P70S6 kinase (P70S6K) and eukaryotic initiation factor 4E (eIF4E), can lead to a suppression of the proliferation and progression of urothelial carcinoma (UC) in an orthotopic mouse non-muscle invasive bladder tumor (NMIBT) model. A KU-7-luc cell intravesically instilled orthotopic mouse NMIBC model was monitored using bioluminescence imaging (BLI) in vivo by interfering with different molecular components using rapamycin and siRNA technology. We then analyzed the effects on molecular activation status, cell growth, proliferation, and progression. A high concentration of rapamycin (10 microM) blocked both P70S6K and elF4E phosphorylation and inhibited cell proliferation in the KU-7-luc cells. It also reduced cell viability and proliferation more than the transfection of siRNA against p70S6K or elF4E. The groups with dual p70S6K and elF4E siRNA, and rapamycin reduced tumor volume and lamina propria invasion more than the groups with p70S6K or elF4E siRNA instillation, although all groups reduced photon density compared to the control. These findings suggest that both the mTOR pathway downstream of eIF4E and p70S6K can be successfully inhibited by high dose rapamycin only, and p70S6K and Elf4E dual inhibition is essential to control bladder tumor growth and progression.
Animals
;
Cell Line
;
Cell Proliferation/drug effects/genetics
;
Cell Survival/drug effects
;
Disease Progression
;
Eukaryotic Initiation Factor-4E/*antagonists & inhibitors/genetics
;
Female
;
Mice
;
Mice, Nude
;
Mucous Membrane/pathology
;
Phosphorylation/drug effects
;
RNA Interference
;
RNA, Small Interfering
;
Ribosomal Protein S6 Kinases, 70-kDa/*antagonists & inhibitors/genetics
;
Signal Transduction/drug effects
;
Sirolimus/*pharmacology
;
TOR Serine-Threonine Kinases/*antagonists & inhibitors/metabolism
;
Urinary Bladder Neoplasms/genetics/*pathology
;
Urothelium/pathology
9.Research progress of p70 ribosomal protein S6 kinase inhibitors.
Zhi-jun TU ; Gao-yun HU ; Qian-bin LI
Acta Pharmaceutica Sinica 2015;50(3):261-271
p70 ribosomal protein S6 kinase (p70S6K), an important member of AGC family, is a kind of multifunctional Ser/Thr kinases, which plays an important role in mTOR signaling cascade. The p70 ribosomal protein S6 kinase is closely associated with diverse cellular processes such as protein synthesis, mRNA processing, glucose homeostasis, cell growth and apoptosis. Recent studies have highlighted the important role of S6K in cancer, which arose interests of scientific researchers for the design and discovery of anti-cancer agents. Herein, the mechanisms of S6K and available inhibitors are reviewed.
Antineoplastic Agents
;
Humans
;
Protein Kinase Inhibitors
;
chemistry
;
Ribosomal Protein S6 Kinases, 70-kDa
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
TOR Serine-Threonine Kinases
10.Sensitivity of esophageal squamous cell carcinoma cells to rapamycin can be improved by siRNA-interfered expression of p70S6K.
Mingyue LIU ; Zhaoming LU ; Yan ZHENG ; Yao CUI ; Jiazhen WANG ; Guiqin HOU
Chinese Journal of Oncology 2015;37(12):885-889
OBJECTIVETo explore the differences in sensitivity to rapamycin of five esophageal squamous cell carcinoma cell lines with different differentiation and the changes of sensitivity of the cells after siRNA-interfered expression of p70S6K.
METHODSEffects of rapamycin on proliferation of ESCC cell lines with different differentiation, EC9706, TE-1, Eca109, KYSE790 and KYSE450 cells, were investigated using cell counting kit 8 (CCK-8) assay, and according to the above results, the EC9706 cells non-sensitive to rapamycin were chosen to be transfected with p70S6K-siRNA. The changes in sensitivity of cells to rapamycin were measured in vitro and in vivo using CCK-8 kit, flow cytometry and tumor formation in nude mice.
RESULTSCCK-8 results showed that all the five cell line cells were sensitive to low concentration of rapamycin (<100 nmol/L), but TE-1 and EC9706 cells, which were with poor differentiation, showed resistance to high concentration of rapamycin. After EC9706 cells were treated with 50, 100, 200, 500 and 1 000 nmol/L rapamycin and p70S6K-siRNA, the proliferation rates of EC9706 cells were (48.67 ± 1.68)%, (15.45 ± 1.54)%, (14.00 ± 0.91)%, (10.97 ± 0.72)% and (2.70 ± 0.32)%, respectively, and were significantly lower than that of cells treated with 50, 100, 200, 500 and 1 000 nmol/L rapamycin and control siRNA [(74.53 ± 1.71)%, (68.27 ± 1.35)%, (71.74 ± 2.44)%, (76.23 ± 1.02)% and (80.21 ± 2.77)%] (P<0.05 for all). The results of flow cytometry showed that the ratios of cells in G1 phase of the p70S6K-siRNA, rapamycin and p70S6K-siRNA+ rapamycin groups were (53.82 ± 1.78)%, (57.87 ± 4.01)% and (73.73 ± 3.68)%, respectively, significantly higher than that in the control group (46.09 ± 2.31)% (P<0.05 for all). The results of tumor formation test in vivo showed that the inhibitory effect of rapamycin on tumor growth was stronger after the cells were transfected with p70S6K-siRNA, and the inhibition rate was 96.5%.
CONCLUSIONESCC cells with different differentiation have different sensitivity to rapamycin, and p70S6K-siRNA can improve the sensitivity of cells to rapamycin in vitro and in vivo.
Animals ; Antibiotics, Antineoplastic ; pharmacology ; Carcinoma, Squamous Cell ; drug therapy ; metabolism ; pathology ; Cell Differentiation ; Cell Line, Tumor ; Cell Proliferation ; Esophageal Neoplasms ; drug therapy ; metabolism ; pathology ; Humans ; Mice ; Mice, Nude ; RNA, Small Interfering ; Ribosomal Protein S6 Kinases, 70-kDa ; genetics ; metabolism ; Signal Transduction ; Sirolimus ; pharmacology ; Transfection

Result Analysis
Print
Save
E-mail