1.Alternative Polyadenylation in Mammalian
Yu ZHANG ; Hong-Xia CHI ; Wu-Ri-Tu YANG ; Yong-Chun ZUO ; Yong-Qiang XING
Progress in Biochemistry and Biophysics 2025;52(1):32-49
With the rapid development of sequencing technologies, the detection of alternative polyadenylation (APA) in mammals has become more precise. APA precisely regulates gene expression by altering the length and position of the poly(A) tail, and is involved in various biological processes such as disease occurrence and embryonic development. The research on APA in mammals mainly focuses on the following aspects:(1) identifying APA based on transcriptome data and elucidating their characteristics; (2) investigating the relationship between APA and gene expression regulation to reveal its important role in life regulation;(3) exploring the intrinsic connections between APA and disease occurrence, embryonic development, differentiation, and other life processes to provide new perspectives and methods for disease diagnosis and treatment, as well as uncovering embryonic development regulatory mechanisms. In this review, the classification, mechanisms and functions of APA were elaborated in detail and the methods for APA identifying and APA data resources based on various transcriptome data were systematically summarized. Moreover, we epitomized and provided an outlook on research on APA, emphasizing the role of sequencing technologies in driving studies on APA in mammals. In the future, with the further development of sequencing technology, the regulatory mechanisms of APA in mammals will become clearer.
2.Comparative Study of 3-Dimensional-Printed Poly-L-Lactic Acid/Bone Morphogenetic Protein (BMP)/Collagen Bone Substitute and Commercial Hydroxyapatite/BMP for Bone Regeneration Efficacy Using a Mouse Calvarial Model
Tae Ho KIM ; Yu Ri HONG ; Jeong Ok LIM ; Chang-Wug OH
Clinics in Orthopedic Surgery 2025;17(2):340-345
Background:
Bone substitutes such as hydroxyapatite (HA) ceramic and recombinant bone morphogenetic protein-2 (BMP-2) are essential in treating bone defects. However, the challenges of controlled and localized BMP-2 delivery necessitate the development of advanced bone graft substitutes. This study introduces and evaluates an innovative, ready-to-use bone substitute employing 3-dimensional-printed poly-L-lactic acid (PLLA) scaffolds combined with BMP-2 to enhance bone regeneration efficiency.
Methods:
We conducted a comparative study using C57BL/6 mice to evaluate the efficacy of rhBMP-2-coated PLLA scaffolds against traditional HA-based bone graft materials. The PLLA scaffolds were coated with varying concentrations of BMP-2 using an alginate-catechol method. Bone regeneration was assessed through micro-computed tomography (CT) imaging and histological analysis 4 weeks after implantation. The statistical significance of bone mass and formation differences across groups was determined using Student t-test and analysis of variance.
Results:
Micro-CT analysis revealed substantial bone formation in the group with PLLA scaffolds containing 0.1% BMP-2, exhibiting a bone volume ratio of 11.1% ± 2.8%, significantly higher than all other groups (p = 0.008). Histological analysis corroborated these findings, showing dense collagen deposition and active osteoblast presence in this group, indicating enhanced bone regeneration.
Conclusions
The novel PLLA scaffold with alginate-catechol-coated BMP-2 significantly enhances bone regeneration compared to traditional bone graft materials. This innovative approach holds promising potential for clinical applications in orthopedics, particularly for treating bone defects.
3.Artemisinin-Quinidine Combination for Suppressing Ventricular Tachyarrhythmia in an Ex Vivo Model of Brugada Syndrome
Hyung Ki JEONG ; Namsik YOON ; Yoo Ri KIM ; Ki Hong LEE ; Hyung Wook PARK
Journal of Korean Medical Science 2025;40(1):e2-
Background:
The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium.Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models. However, quinidine remains a well-established antiarrhythmic agent for treating BrS. Therefore, this study aims to investigate the efficacy of combining artemisinin with low-dose quinidine in suppressing ventricular tachyarrhythmia (VTA) in experimental canine BrS models.
Methods:
Transmural pseudo-electrocardiogram and epicardial/endocardial action potential (AP) were recorded from coronary-perfused canine right ventricular wedge preparation. To mimic the BrS model, acetylcholine (3 μM), calcium channel blocker verapamil (1 μM), and Ito agonist NS5806 (6–10 μM) were administered until VTA was induced. Subsequently, lowdose quinidine (1–2 μM) combined with artemisinin (100 μM) was perfused to mitigate VTA.Key parameters, including AP duration, J wave area, notch index, and T wave dispersion, were measured.
Results:
After administering the provocation agents, all sample models exhibited prominent J waves and VTA. Artemisinin alone (100–150 μM) suppressed VTA and restored the AP dome in all three preparations. Its infusion resulted in reductions in the J wave area and epicardial notch index. Consequently, low-dose quinidine (1–2 μM) did not fully restore the AP dome in all six sample models. However, when combined with additional artemisinin (100 μM), lowdose quinidine effectively suppressed VTA in all six models and restored the AP dome while also decreasing the J wave area and epicardial notch index.
Conclusion
Low-dose quinidine alone fails to fully alleviate VTA in the BrS wedge model.However, its combination with artemisinin effectively suppresses VTA. Artemisinin may reduce the therapeutic dose of quinidine, potentially minimizing its associated adverse effects.
4.Rapid Recovery From SARS-CoV-2Infection Among Immunocompromised Children Despite Limited Neutralizing Antibody Response: A Virologic and Sero-Immunologic Analysis of a Single-Center Cohort
Doo Ri KIM ; Byoung Kwon PARK ; Jin Yang BAEK ; Areum SHIN ; Ji Won LEE ; Hee Young JU ; Hee Won CHO ; Keon Hee YOO ; Ki Woong SUNG ; Chae-Hong JEONG ; Tae Yeul KIM ; June-Young KOH ; Jae-Hoon KO ; Yae-Jean KIM
Journal of Korean Medical Science 2025;40(12):e52-
Background:
Immunocompromised (IC) pediatric patients are at increased risk of severe acute respiratory syndrome coronavirus 2 infection, but the viral kinetics and seroimmunologic response in pediatric IC patients are not fully understood.
Methods:
From April to June 2022, a prospective cohort study was conducted. IC pediatric patients hospitalized for coronavirus disease 2019 (COVID-19) were enrolled. Serial saliva swab and serum specimens were subjected to reverse transcription polymerase chain reaction assays with mutation sequencing, viral culture, anti-spike-protein, anti-nucleocapsid antibody assays, plaque reduction neutralization test (PRNT) and multiplex cytokine assays.
Results:
Eleven IC children were evaluated. Their COVID-19 symptoms resolved promptly (median, 2.5 days; interquartile range, 2.0–4.3). Saliva swab specimens contained lower viral loads than nasopharyngeal swabs (P = 0.008). All cases were BA.2 infection, and 45.5% tested negative within 14 days by saliva swab from symptom onset. Eight (72.7%) showed a time-dependent increase in BA.2 PRNT titers, followed by rapid waning. Multiplex cytokine assays revealed that monocyte/macrophage activation and Th 1 responses were comparable to those of non-IC adults. Activation of interleukin (IL)-1Ra and IL-6 was brief, and IL-17A was suppressed. Activated interferon (IFN)-γ and IL-18/IL-1F4 signals were observed.
Conclusion
IC pediatric patients rapidly recovered from COVID-19 with low viral loads.Antibody response was limited, but cytokine analysis suggested an enhanced IFN-γ- and IL-18-mediated immune response without excessive activation of inflammatory cascades. To validate our observation, immune cell-based functional studies need to be conducted among IC and non-IC children.
5.Artemisinin-Quinidine Combination for Suppressing Ventricular Tachyarrhythmia in an Ex Vivo Model of Brugada Syndrome
Hyung Ki JEONG ; Namsik YOON ; Yoo Ri KIM ; Ki Hong LEE ; Hyung Wook PARK
Journal of Korean Medical Science 2025;40(1):e2-
Background:
The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium.Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models. However, quinidine remains a well-established antiarrhythmic agent for treating BrS. Therefore, this study aims to investigate the efficacy of combining artemisinin with low-dose quinidine in suppressing ventricular tachyarrhythmia (VTA) in experimental canine BrS models.
Methods:
Transmural pseudo-electrocardiogram and epicardial/endocardial action potential (AP) were recorded from coronary-perfused canine right ventricular wedge preparation. To mimic the BrS model, acetylcholine (3 μM), calcium channel blocker verapamil (1 μM), and Ito agonist NS5806 (6–10 μM) were administered until VTA was induced. Subsequently, lowdose quinidine (1–2 μM) combined with artemisinin (100 μM) was perfused to mitigate VTA.Key parameters, including AP duration, J wave area, notch index, and T wave dispersion, were measured.
Results:
After administering the provocation agents, all sample models exhibited prominent J waves and VTA. Artemisinin alone (100–150 μM) suppressed VTA and restored the AP dome in all three preparations. Its infusion resulted in reductions in the J wave area and epicardial notch index. Consequently, low-dose quinidine (1–2 μM) did not fully restore the AP dome in all six sample models. However, when combined with additional artemisinin (100 μM), lowdose quinidine effectively suppressed VTA in all six models and restored the AP dome while also decreasing the J wave area and epicardial notch index.
Conclusion
Low-dose quinidine alone fails to fully alleviate VTA in the BrS wedge model.However, its combination with artemisinin effectively suppresses VTA. Artemisinin may reduce the therapeutic dose of quinidine, potentially minimizing its associated adverse effects.
6.Rapid Recovery From SARS-CoV-2Infection Among Immunocompromised Children Despite Limited Neutralizing Antibody Response: A Virologic and Sero-Immunologic Analysis of a Single-Center Cohort
Doo Ri KIM ; Byoung Kwon PARK ; Jin Yang BAEK ; Areum SHIN ; Ji Won LEE ; Hee Young JU ; Hee Won CHO ; Keon Hee YOO ; Ki Woong SUNG ; Chae-Hong JEONG ; Tae Yeul KIM ; June-Young KOH ; Jae-Hoon KO ; Yae-Jean KIM
Journal of Korean Medical Science 2025;40(12):e52-
Background:
Immunocompromised (IC) pediatric patients are at increased risk of severe acute respiratory syndrome coronavirus 2 infection, but the viral kinetics and seroimmunologic response in pediatric IC patients are not fully understood.
Methods:
From April to June 2022, a prospective cohort study was conducted. IC pediatric patients hospitalized for coronavirus disease 2019 (COVID-19) were enrolled. Serial saliva swab and serum specimens were subjected to reverse transcription polymerase chain reaction assays with mutation sequencing, viral culture, anti-spike-protein, anti-nucleocapsid antibody assays, plaque reduction neutralization test (PRNT) and multiplex cytokine assays.
Results:
Eleven IC children were evaluated. Their COVID-19 symptoms resolved promptly (median, 2.5 days; interquartile range, 2.0–4.3). Saliva swab specimens contained lower viral loads than nasopharyngeal swabs (P = 0.008). All cases were BA.2 infection, and 45.5% tested negative within 14 days by saliva swab from symptom onset. Eight (72.7%) showed a time-dependent increase in BA.2 PRNT titers, followed by rapid waning. Multiplex cytokine assays revealed that monocyte/macrophage activation and Th 1 responses were comparable to those of non-IC adults. Activation of interleukin (IL)-1Ra and IL-6 was brief, and IL-17A was suppressed. Activated interferon (IFN)-γ and IL-18/IL-1F4 signals were observed.
Conclusion
IC pediatric patients rapidly recovered from COVID-19 with low viral loads.Antibody response was limited, but cytokine analysis suggested an enhanced IFN-γ- and IL-18-mediated immune response without excessive activation of inflammatory cascades. To validate our observation, immune cell-based functional studies need to be conducted among IC and non-IC children.
7.Evaluating Rituximab Failure Rates in Neuromyelitis Optica Spectrum Disorder: A Nationwide Real-World Study From South Korea
Su-Hyun KIM ; Ju-Hong MIN ; Sung-Min KIM ; Eun-Jae LEE ; Young-Min LIM ; Ha Young SHIN ; Young Nam KWON ; Eunhee SOHN ; Sooyoung KIM ; Min Su PARK ; Tai-Seung NAM ; Byeol-A YOON ; Jong Kuk KIM ; Kyong Jin SHIN ; Yoo Hwan KIM ; Jin Myoung SEOK ; Jeong Bin BONG ; Sohyeon KIM ; Hung Youl SEOK ; Sun-Young OH ; Ohyun KWON ; Sunyoung KIM ; Sukyoon LEE ; Nam-Hee KIM ; Eun Bin CHO ; Sa-Yoon KANG ; Seong-il OH ; Jong Seok BAE ; Suk-Won AHN ; Ki Hoon KIM ; You-Ri KANG ; Woohee JU ; Seung Ho CHOO ; Yeon Hak CHUNG ; Jae-Won HYUN ; Ho Jin KIM
Journal of Clinical Neurology 2025;21(2):131-136
Background:
and Purpose Treatments for neuromyelitis optica spectrum disorder (NMOSD) such as eculizumab, ravulizumab, satralizumab, and inebilizumab have significantly advanced relapse prevention, but they remain expensive. Rituximab is an off-label yet popular alternative that offers a cost-effective solution, but its real-world efficacy needs better quantification for guiding the application of newer approved NMOSD treatments (ANTs). This study aimed to determine real-world rituximab failure rates to anticipate the demand for ANTs and aid in resource allocation.
Methods:
We conducted a nationwide retrospective study involving 605 aquaporin-4-antibody-positive NMOSD patients from 22 centers in South Korea that assessed the efficacy and safety of rituximab over a median follow-up of 47 months.
Results:
The 605 patients treated with rituximab included 525 (87%) who received continuous therapy throughout the follow-up period (median=47 months, interquartile range=15–87 months). During this period, 117 patients (19%) experienced at least 1 relapse. Notably, 68 of these patients (11% of the total cohort) experienced multiple relapses or at least 1 severe relapse.Additionally, 2% of the patients discontinued rituximab due to adverse events, which included severe infusion reactions, neutropenia, and infections.
Conclusions
This study has confirmed the efficacy of rituximab in treating NMOSD, as evidenced by an 87% continuation rate among patients over a 4-year follow-up period. Nevertheless, the occurrence of at least one relapse in 19% of the cohort, including 11% who experienced multiple or severe relapses, and a 2% discontinuation rate due to adverse events highlight the urgent need for alternative therapeutic options.
8.Comparative Study of 3-Dimensional-Printed Poly-L-Lactic Acid/Bone Morphogenetic Protein (BMP)/Collagen Bone Substitute and Commercial Hydroxyapatite/BMP for Bone Regeneration Efficacy Using a Mouse Calvarial Model
Tae Ho KIM ; Yu Ri HONG ; Jeong Ok LIM ; Chang-Wug OH
Clinics in Orthopedic Surgery 2025;17(2):340-345
Background:
Bone substitutes such as hydroxyapatite (HA) ceramic and recombinant bone morphogenetic protein-2 (BMP-2) are essential in treating bone defects. However, the challenges of controlled and localized BMP-2 delivery necessitate the development of advanced bone graft substitutes. This study introduces and evaluates an innovative, ready-to-use bone substitute employing 3-dimensional-printed poly-L-lactic acid (PLLA) scaffolds combined with BMP-2 to enhance bone regeneration efficiency.
Methods:
We conducted a comparative study using C57BL/6 mice to evaluate the efficacy of rhBMP-2-coated PLLA scaffolds against traditional HA-based bone graft materials. The PLLA scaffolds were coated with varying concentrations of BMP-2 using an alginate-catechol method. Bone regeneration was assessed through micro-computed tomography (CT) imaging and histological analysis 4 weeks after implantation. The statistical significance of bone mass and formation differences across groups was determined using Student t-test and analysis of variance.
Results:
Micro-CT analysis revealed substantial bone formation in the group with PLLA scaffolds containing 0.1% BMP-2, exhibiting a bone volume ratio of 11.1% ± 2.8%, significantly higher than all other groups (p = 0.008). Histological analysis corroborated these findings, showing dense collagen deposition and active osteoblast presence in this group, indicating enhanced bone regeneration.
Conclusions
The novel PLLA scaffold with alginate-catechol-coated BMP-2 significantly enhances bone regeneration compared to traditional bone graft materials. This innovative approach holds promising potential for clinical applications in orthopedics, particularly for treating bone defects.
9.Comparative Study of 3-Dimensional-Printed Poly-L-Lactic Acid/Bone Morphogenetic Protein (BMP)/Collagen Bone Substitute and Commercial Hydroxyapatite/BMP for Bone Regeneration Efficacy Using a Mouse Calvarial Model
Tae Ho KIM ; Yu Ri HONG ; Jeong Ok LIM ; Chang-Wug OH
Clinics in Orthopedic Surgery 2025;17(2):340-345
Background:
Bone substitutes such as hydroxyapatite (HA) ceramic and recombinant bone morphogenetic protein-2 (BMP-2) are essential in treating bone defects. However, the challenges of controlled and localized BMP-2 delivery necessitate the development of advanced bone graft substitutes. This study introduces and evaluates an innovative, ready-to-use bone substitute employing 3-dimensional-printed poly-L-lactic acid (PLLA) scaffolds combined with BMP-2 to enhance bone regeneration efficiency.
Methods:
We conducted a comparative study using C57BL/6 mice to evaluate the efficacy of rhBMP-2-coated PLLA scaffolds against traditional HA-based bone graft materials. The PLLA scaffolds were coated with varying concentrations of BMP-2 using an alginate-catechol method. Bone regeneration was assessed through micro-computed tomography (CT) imaging and histological analysis 4 weeks after implantation. The statistical significance of bone mass and formation differences across groups was determined using Student t-test and analysis of variance.
Results:
Micro-CT analysis revealed substantial bone formation in the group with PLLA scaffolds containing 0.1% BMP-2, exhibiting a bone volume ratio of 11.1% ± 2.8%, significantly higher than all other groups (p = 0.008). Histological analysis corroborated these findings, showing dense collagen deposition and active osteoblast presence in this group, indicating enhanced bone regeneration.
Conclusions
The novel PLLA scaffold with alginate-catechol-coated BMP-2 significantly enhances bone regeneration compared to traditional bone graft materials. This innovative approach holds promising potential for clinical applications in orthopedics, particularly for treating bone defects.
10.Evaluating Rituximab Failure Rates in Neuromyelitis Optica Spectrum Disorder: A Nationwide Real-World Study From South Korea
Su-Hyun KIM ; Ju-Hong MIN ; Sung-Min KIM ; Eun-Jae LEE ; Young-Min LIM ; Ha Young SHIN ; Young Nam KWON ; Eunhee SOHN ; Sooyoung KIM ; Min Su PARK ; Tai-Seung NAM ; Byeol-A YOON ; Jong Kuk KIM ; Kyong Jin SHIN ; Yoo Hwan KIM ; Jin Myoung SEOK ; Jeong Bin BONG ; Sohyeon KIM ; Hung Youl SEOK ; Sun-Young OH ; Ohyun KWON ; Sunyoung KIM ; Sukyoon LEE ; Nam-Hee KIM ; Eun Bin CHO ; Sa-Yoon KANG ; Seong-il OH ; Jong Seok BAE ; Suk-Won AHN ; Ki Hoon KIM ; You-Ri KANG ; Woohee JU ; Seung Ho CHOO ; Yeon Hak CHUNG ; Jae-Won HYUN ; Ho Jin KIM
Journal of Clinical Neurology 2025;21(2):131-136
Background:
and Purpose Treatments for neuromyelitis optica spectrum disorder (NMOSD) such as eculizumab, ravulizumab, satralizumab, and inebilizumab have significantly advanced relapse prevention, but they remain expensive. Rituximab is an off-label yet popular alternative that offers a cost-effective solution, but its real-world efficacy needs better quantification for guiding the application of newer approved NMOSD treatments (ANTs). This study aimed to determine real-world rituximab failure rates to anticipate the demand for ANTs and aid in resource allocation.
Methods:
We conducted a nationwide retrospective study involving 605 aquaporin-4-antibody-positive NMOSD patients from 22 centers in South Korea that assessed the efficacy and safety of rituximab over a median follow-up of 47 months.
Results:
The 605 patients treated with rituximab included 525 (87%) who received continuous therapy throughout the follow-up period (median=47 months, interquartile range=15–87 months). During this period, 117 patients (19%) experienced at least 1 relapse. Notably, 68 of these patients (11% of the total cohort) experienced multiple relapses or at least 1 severe relapse.Additionally, 2% of the patients discontinued rituximab due to adverse events, which included severe infusion reactions, neutropenia, and infections.
Conclusions
This study has confirmed the efficacy of rituximab in treating NMOSD, as evidenced by an 87% continuation rate among patients over a 4-year follow-up period. Nevertheless, the occurrence of at least one relapse in 19% of the cohort, including 11% who experienced multiple or severe relapses, and a 2% discontinuation rate due to adverse events highlight the urgent need for alternative therapeutic options.

Result Analysis
Print
Save
E-mail