1.Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging.
Yiyuan ZHANG ; Yandong ZHENG ; Si WANG ; Yanling FAN ; Yanxia YE ; Yaobin JING ; Zunpeng LIU ; Shanshan YANG ; Muzhao XIONG ; Kuan YANG ; Jinghao HU ; Shanshan CHE ; Qun CHU ; Moshi SONG ; Guang-Hui LIU ; Weiqi ZHANG ; Shuai MA ; Jing QU
Protein & Cell 2023;14(4):279-293
Aging poses a major risk factor for cardiovascular diseases, the leading cause of death in the aged population. However, the cell type-specific changes underlying cardiac aging are far from being clear. Here, we performed single-nucleus RNA-sequencing analysis of left ventricles from young and aged cynomolgus monkeys to define cell composition changes and transcriptomic alterations across different cell types associated with age. We found that aged cardiomyocytes underwent a dramatic loss in cell numbers and profound fluctuations in transcriptional profiles. Via transcription regulatory network analysis, we identified FOXP1, a core transcription factor in organ development, as a key downregulated factor in aged cardiomyocytes, concomitant with the dysregulation of FOXP1 target genes associated with heart function and cardiac diseases. Consistently, the deficiency of FOXP1 led to hypertrophic and senescent phenotypes in human embryonic stem cell-derived cardiomyocytes. Altogether, our findings depict the cellular and molecular landscape of ventricular aging at the single-cell resolution, and identify drivers for primate cardiac aging and potential targets for intervention against cardiac aging and associated diseases.
Aged
;
Animals
;
Humans
;
Aging/genetics*
;
Forkhead Transcription Factors/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Primates/metabolism*
;
Repressor Proteins/metabolism*
;
Transcriptome
;
Macaca fascicularis/metabolism*
2.lncR-GAS5 upregulates the splicing factor SRSF10 to impair endothelial autophagy, leading to atherogenesis.
Yuhua FAN ; Yue ZHANG ; Hongrui ZHAO ; Wenfeng LIU ; Wanqing XU ; Lintong JIANG ; Ranchen XU ; Yue ZHENG ; Xueqing TANG ; Xiaohan LI ; Limin ZHAO ; Xin LIU ; Yang HONG ; Yuan LIN ; Hui CHEN ; Yong ZHANG
Frontiers of Medicine 2023;17(2):317-329
Long noncoding RNAs (lncRNAs) play a critical role in the regulation of atherosclerosis. Here, we investigated the role of the lncRNA growth arrest-specific 5 (lncR-GAS5) in atherogenesis. We found that the enforced expression of lncR-GAS5 contributed to the development of atherosclerosis, which presented as increased plaque size and reduced collagen content. Moreover, impaired autophagy was observed, as shown by a decreased LC3II/LC3I protein ratio and an elevated P62 level in lncR-GAS5-overexpressing human aortic endothelial cells. By contrast, lncR-GAS5 knockdown promoted autophagy. Moreover, serine/arginine-rich splicing factor 10 (SRSF10) knockdown increased the LC3II/LC3I ratio and decreased the P62 level, thus enhancing the formation of autophagic vacuoles, autolysosomes, and autophagosomes. Mechanistically, lncR-GAS5 regulated the downstream splicing factor SRSF10 to impair autophagy in the endothelium, which was reversed by the knockdown of SRSF10. Further results revealed that overexpression of the lncR-GAS5-targeted gene miR-193-5p promoted autophagy and autophagic vacuole accumulation by repressing its direct target gene, SRSF10. Notably, miR-193-5p overexpression decreased plaque size and increased collagen content. Altogether, these findings demonstrate that lncR-GAS5 partially contributes to atherogenesis and plaque instability by impairing endothelial autophagy. In conclusion, lncR-GAS5 overexpression arrested endothelial autophagy through the miR-193-5p/SRSF10 signaling pathway. Thus, miR-193-5p/SRSF10 may serve as a novel treatment target for atherosclerosis.
Humans
;
Atherosclerosis/genetics*
;
Autophagy/genetics*
;
Cell Cycle Proteins/metabolism*
;
Endothelial Cells/metabolism*
;
Endothelium/metabolism*
;
MicroRNAs/metabolism*
;
Repressor Proteins/metabolism*
;
RNA Splicing Factors
;
Serine-Arginine Splicing Factors/genetics*
;
RNA, Long Noncoding/metabolism*
3.Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2.
Mingyue TAN ; Qi PAN ; Qi WU ; Jianfa LI ; Jun WANG
Frontiers of Medicine 2023;17(3):503-517
Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.
Humans
;
Carcinoma, Renal Cell/genetics*
;
Fructose-Bisphosphate Aldolase/metabolism*
;
Co-Repressor Proteins/metabolism*
;
Transcription Factors/genetics*
;
Kidney Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
4.Primary synovial sarcoma of lung: a clinicopathological analysis of 12 cases.
X W ZHANG ; J G WEI ; J P SUN ; Z G XU ; Q CHENG ; L ZHANG ; L F KONG
Chinese Journal of Pathology 2023;52(11):1120-1125
Objective: To investigate the clinicopathological features, immunophenotype, molecular features and differential diagnosis of primary synovial sarcoma of the lung (PSSL). Methods: Twelve cases of PSSL were collected at Henan Provincial People's Hospital, during May 2010 and April 2021, and their clinicopathological parameters were summarized. SS18-SSX, H3K27Me3, and SOX2 were added to the original immunomarkers to evaluate their diagnostic value for PSSL. Results: The age of 12 patients when diagnosed ranged from 32 to 75 years (mean of 50 years). There were 7 males and 5 females, 2 left lung cases and 10 right lung cases. Of the 6 patients who underwent surgical resection, five cases were confined to lung tissue (T1), one case had mediastinal invasion (T3), two cases had regional lymph node metastasis (N1), and none had distal metastasis. Microscopically, 11 cases showed monophasic spindle cell type and one case showed biphasic type composed of mainly epithelial cells consisting of cuboidal to columnar cells with glandular and cribriform structures. It was difficult to make the diagnosis by using the biopsy specimens. Immunohistochemistry (IHC) showed CKpan expression in 8 of 12 cases; EMA expression in 11 of 12 case; TLE1 expression in 8 of 12 cases; S-100 protein expression in two of 12 cases; various expression of bcl-2 and vimentin in 12 cases, but no expression of SOX10 and CD34 in all the cases. The Ki-67 index was 15%-30%. The expression of SS18-SSX fusion antibody was diffusely and strongly positive in all 12 cases. SOX2 was partially or diffusely expressed in 8 of 12 cases, with strong expression in the epithelial component. H3K27Me3 was absent in 3 of 12 cases. SS18 gene translocation was confirmed by fluorescence in situ hybridization (FISH) test in all 12 samples. Six cases underwent surgery and postoperative chemotherapy, while the other six cases had chemotherapy alone. Ten patients were followed up after 9-114 months, with an average of 41 months and a median of 26 months. Five patients survived and five died of the disease within two years. Conclusions: PSSL is rare and has a broad morphological spectrum. IHC and molecular tests are needed for definitive diagnosis. Compared with current commonly used IHC markers, SS18-SSX fusion antibody has better sensitivity to PSSL, which could be used as an alternative for FISH, reverse transcription-polymerase chain reaction or next generation sequencing in the diagnosis of PSSL.
Male
;
Female
;
Humans
;
Adult
;
Middle Aged
;
Aged
;
Biomarkers, Tumor/analysis*
;
Sarcoma, Synovial/diagnosis*
;
In Situ Hybridization, Fluorescence
;
Histones/genetics*
;
Proto-Oncogene Proteins/metabolism*
;
Oncogene Proteins, Fusion/genetics*
;
Repressor Proteins/metabolism*
;
Lung/pathology*
;
Lung Neoplasms
5.From azoospermia to macrozoospermia, a phenotypic continuum due to mutations in the ZMYND15 gene.
Zine-Eddine KHERRAF ; Caroline CAZIN ; Florence LESTRADE ; Jana MURONOVA ; Charles COUTTON ; Christophe ARNOULT ; Nicolas THIERRY-MIEG ; Pierre F RAY
Asian Journal of Andrology 2022;24(3):243-247
Thanks to tremendous advances in sequencing technologies and in particular to whole exome sequencing (WES), many genes have now been linked to severe sperm defects. A precise genetic diagnosis is obtained for a minority of patients and only for the most severe defects like azoospermia or macrozoospermia which is very often due to defects in the aurora kinase C (AURKC gene. Here, we studied a subject with a severe oligozoospermia and a phenotypic diagnosis of macrozoospermia. AURKC analysis did not reveal any deleterious variant. WES was then initiated which permitted to identify a homozygous loss of function variant in the zinc finger MYND-type containing 15 (ZMYND15 gene. ZMYND15 has been described to serve as a switch for haploid gene expression, and mice devoid of ZMYND15 were shown to be sterile due to nonobstructive azoospermia (NOA). In man, ZMYND15 has been associated with NOA and severe oligozoospermia. We confirm here that the presence of a bi-allelic ZMYND15 variant induces a severe oligozoospermia. In addition, we show that severe oligozoospermia can be associated macrozoospermia, and that a phenotypic misdiagnosis is possible, potentially delaying the genetic diagnosis. In conclusion, genetic defects in ZMYND15 can induce complete NOA or severe oligozoospermia associated with a very severe teratozoospermia. In our experience, severe oligozoospermia is often associated with severe teratozoospermia and can sometimes be misinterpreted as macrozoospermia or globozoospermia. In these instances, specific AURKC or dpy-19 like 2 (DPY19L2) diagnosis is usually negative and we recommend the direct use of a pan-genomic techniques such as WES.
Animals
;
Azoospermia/genetics*
;
Humans
;
Infertility, Male/genetics*
;
Male
;
Membrane Proteins/genetics*
;
Mice
;
Mutation
;
Oligospermia/genetics*
;
Repressor Proteins/metabolism*
;
Teratozoospermia/genetics*
6.circ_0003204 regulates the osteogenic differentiation of human adipose-derived stem cells via miR-370-3p/HDAC4 axis.
Liyuan YU ; Kai XIA ; Jing ZHOU ; Zhiai HU ; Xing YIN ; Chenchen ZHOU ; Shujuan ZOU ; Jun LIU
International Journal of Oral Science 2022;14(1):30-30
Human adipose-derived stem cells (hASCs) are a promising cell type for bone tissue regeneration. Circular RNAs (circRNAs) have been shown to play a critical role in regulating various cell differentiation and involve in mesenchymal stem cell osteogenesis. However, how circRNAs regulate hASCs in osteogenesis is still unclear. Herein, we found circ_0003204 was significantly downregulated during osteogenic differentiation of hASCs. Knockdown of circ_0003204 by siRNA or overexpression by lentivirus confirmed circ_0003204 could negatively regulate the osteogenic differentiation of hASCs. We performed dual-luciferase reporting assay and rescue experiments to verify circ_0003204 regulated osteogenic differentiation via sponging miR-370-3p. We predicted and confirmed that miR-370-3p had targets in the 3'-UTR of HDAC4 mRNA. The following rescue experiments indicated that circ_0003204 regulated the osteogenic differentiation of hASCs via miR-370-3p/HDAC4 axis. Subsequent in vivo experiments showed the silencing of circ_0003204 increased the bone formation and promoted the expression of osteogenic-related proteins in a mouse bone defect model, while overexpression of circ_0003204 inhibited bone defect repair. Our findings indicated that circ_0003204 might be a promising target to promote the efficacy of hASCs in repairing bone defects.
Adipose Tissue/metabolism*
;
Animals
;
Cell Differentiation/genetics*
;
Cells, Cultured
;
Histone Deacetylases/metabolism*
;
Humans
;
Mice
;
MicroRNAs/metabolism*
;
Osteogenesis/genetics*
;
RNA, Circular/metabolism*
;
Repressor Proteins/metabolism*
;
Signal Transduction
;
Stem Cells/metabolism*
7.Construction of MicroRNA-Target Interaction Networks Based on MicroRNA Expression Profiles of HRV16-infected H1-HeLa Cells.
Qin Qin SONG ; Yan Hai WANG ; Xin Ling WANG ; Bing Tian SHI ; Rui Fang WANG ; Juan SONG ; Wen Jun WANG ; Dong XIA ; Zhi Qiang XIA ; Qiang WEI ; Jun HAN
Biomedical and Environmental Sciences 2022;35(9):854-860
In the present study we investigated the changes in miRNA levels inhuman rhinovirus 16 (HRV16)-infected cells. A small RNA deep sequencing experiment was performed through next-generation sequencing. In total, 53 differentially expressed miRNAs were confirmed by RT-qPCR, including 37 known miRNAs and 16 novel miRNAs. Interaction networks between differentially expressed miRNAs and their targets were established by mirDIP and Navigator. The prediction results showed that QKI, NFAT5, BNC2, CELF2, LCOR, MBNL2, MTMR3, NFIB, PPARGC1A, RSBN1, TRPS1, WDR26, and ZNF148, which are associated with cellular differentiation and transcriptional regulation, were recognized by 12, 11, or 9 miRNAs. Many correlations were observed between transcriptional or post-transcriptional regulation of an miRNA and the expression levels of its target genes in HRV16-infected H1-HeLa cells.
CELF Proteins/metabolism*
;
DNA-Binding Proteins/genetics*
;
Gene Expression Profiling
;
Gene Expression Regulation
;
HeLa Cells
;
High-Throughput Nucleotide Sequencing
;
Humans
;
MicroRNAs/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Protein Tyrosine Phosphatases, Non-Receptor
;
Repressor Proteins/metabolism*
;
Sequence Analysis, RNA
;
Transcription Factors/metabolism*
8.The role and mechanism of tumor metastasis-associated gene 1 in radiosensitivity of HeLa cells.
Fang Zhou SUN ; Jin Song WANG ; Chun Xiao LI ; Ting WANG ; Jing Yao ZHANG ; Yan Tong ZHOU ; Hai Juan WANG ; Hai Li QIAN
Chinese Journal of Oncology 2022;44(9):962-967
Objective: To determine the effect of tumor metastasis-associated gene 1 (MTA1) on the sensitivity of HeLa cells to radiotherapy, and to clarify its molecular mechanism. Methods: The transcriptome differences between MTA1 knocked down Hela cells and control cells were analyzed, and the differentially expressed genes (DEGs) was used to perform Gene-Set Enrichment Analysis (GSEA) and Gene Ontology (GO) cluster analysis. Flow cytometry was used to detect apoptosis in MTA1-overexpressed HeLa cells and control cells before and after 10 Gy X-ray irradiation. Cloning formation assay and real-time cellular analysis (RTCA) were used to monitor the cell proliferation before and after 2 Gy X-ray irradiation. To dissect the underlying molecular mechanisms of MTA1 affecting the sensitivity of radiotherapy, the proteins encoded by the DEGs were selected to construct a protein-protein interaction network, the expression of γ-H2AX was detected by immunofluorescence assay, and the expression levels of γ-H2AX, β-CHK2, PARP and cleaved caspase 3 were measured by western blot. Results: By transcriptome sequencing analysis, we obtained 649 DEGs, of which 402 genes were up-regulated in MTA1 knockdown HeLa cells and 247 genes were down-regulated. GSEA results showed that DEGs associated with MTA1 were significantly enriched in cellular responses to DNA damage repair processes. The results of flow cytometry showed that the apoptosis rate of MTA1 over-expression group (15.67±0.81)% after 10 Gy X-ray irradiation was significantly lower than that of the control group [(40.27±2.73)%, P<0.001]. After 2 Gy X-ray irradiation, the proliferation capacity of HeLa cells overexpressing MTA1 was higher than that of control cells (P=0.024). The numbers of colon in MTA1 over-expression group before and after 2 Gy X-ray irradiation were (176±7) and (137±7) respectively, higher than (134±4) and (75±4) in control HeLa cells (P<0.05). The results of immunofluorescence assay showed that there was no significant expression of γ-H2AX in MTA1 overexpressed and control HeLa cells without X-ray irradiation. Western blot results showed that the expression level of β-CHK2 in MTA1-overexpressing HeLa cells (1.04±0.06) was higher than that in control HeLa cells (0.58±0.25, P=0.036) after 10 Gy X-ray irradiation. The expression levels of γ-H2AX, PARP, and cleaved caspase 3 were 0.52±0.13, 0.52±0.22, and 0.63±0.18, respectively, in HeLa cells overexpressing MTA1, which were lower than 0.87±0.06, 0.78±0.12 and 0.90±0.12 in control cells (P>0.05). Conclusions: This study showed that MTA1 is significantly associated with radiosensitivity in cervical cancer HeLa cells. MTA1 over-expression obviously reduces the sensitivity of cervical cancer cells to X-ray irradiation. Mechanism studies initially indicate that MTA1 reduces the radiosensitivity of cervical cancer cells by inhibiting cleaved caspase 3 to suppress apoptosis and increasing β-CHK2 to promote DNA repair.
Apoptosis/genetics*
;
Caspase 3/metabolism*
;
Female
;
HeLa Cells
;
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors
;
Radiation Tolerance/genetics*
;
Repressor Proteins/metabolism*
;
Trans-Activators/metabolism*
;
Uterine Cervical Neoplasms/radiotherapy*
9.Effects of HDAC4 on IL-1β-induced matrix metalloproteinase expression regulated partially through the WNT3A/β-catenin pathway.
Qi NING ; Ye-Hua GAN ; Rui-Rui SHI ; Juan-Hong MENG
Chinese Medical Journal 2021;134(8):963-970
BACKGROUND:
Histone deacetylase 4 (HDAC4) regulates chondrocyte hypertrophy and bone formation. The aim of the present study was to explore the effects of HDAC4 on Interleukin 1 beta (IL-1β)-induced chondrocyte extracellular matrix degradation and whether it is regulated through the WNT family member 3A (WNT3A)/β-catenin signaling pathway.
METHODS:
Primary chondrocytes (CC) and human chondrosarcoma cells (SW1353 cells) were treated with IL-1β and the level of HDAC4 was assayed using Western blotting. Then, HDAC4 expression in the SW1353 cells was silenced using small interfering RNA to detect the effect of HDAC4 knockdown on the levels of matrix metalloproteinase 3 (MMP3) and MMP13 induced by IL-1β. After transfection with HDAC4 plasmids, the overexpression efficiency was examined using Real-time quantitative polymerase chain reaction (qRT-PCR) and the levels of MMP3 and MMP13 were assayed using Western blotting. After incubation with IL-1β, the translocation of β-catenin into the nucleus was observed using immunofluorescence staining in SW1353 cells to investigate the activation of the WNT3A/β-catenin signaling pathway. Finally, treatment with WNT3A and transfection with glycogen synthase kinase 3 beta (GSK3β) plasmids were assessed for their effects on HDAC4 levels using Western blotting.
RESULTS:
IL-1β downregulated HDAC4 levels in chondrocytes and SW1353 cells. Furthermore, HDAC4 knockdown increased the levels of MMP3 and MMP13, which contributed to the degradation of the extracellular matrix. Overexpression of HDAC4 inhibited IL-1β-induced increases in MMP3 and MMP13. IL-1β upregulated the levels of WNT3A, and WNT3A reduced HDAC4 levels in SW1353 cells. GSK-3β rescued IL-1β-induced downregulation of HDAC4 in SW1353 cells.
CONCLUSION
HDAC4 exerted an inhibitory effect on IL-1β-induced extracellular matrix degradation and was regulated partially by the WNT3A/β-catenin signaling pathway.
Cell Line, Tumor
;
Cells, Cultured
;
Chondrocytes/metabolism*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Histone Deacetylases/genetics*
;
Humans
;
Interleukin-1beta/pharmacology*
;
Matrix Metalloproteinase 13/metabolism*
;
Matrix Metalloproteinase 3
;
Repressor Proteins
;
Wnt Signaling Pathway
;
Wnt3A Protein/genetics*
;
beta Catenin/metabolism*
10.Silencing DNMT1 Attenuates the Effect of WIF-1 Gene Promoter Methylation on the Biological Behavior of Chronic Myeloid Leukemia K562 Cells.
Kun WU ; Zhen JIN ; Yi-Xun LI ; Xin LI ; Shen-Ju CHENG ; Yan-Hong LI ; Chong GUO
Journal of Experimental Hematology 2021;29(6):1768-1774
OBJECTIVE:
To investigate the effect of silencing DNA methyltransferase 1(DNMT1) to the methylation of the promoter of the tumor suppressor gene wnt-1 (WIF-1) in human chronic myeloid leukemia (CML) cells.
METHODS:
DNMT1 siRNAi plasmid was constructed and DNMT1 siRNAi was transfected into CML K562 cells. RT-PCR and Western blot were used to detect the expression of DNMT1 gene and related protein, and methylation PCR was used to detect WIF-1 gene promoter methylation level. The trypan blue exclusion and MTT assay were used to detect the cell proliferation, flow cytometry were used to detect the cell apoptosis rate, colony formation assay was used to detect cell colony formation ability. Expression of Wnt/β- catenin and its downstream signaling pathway proteins were detected by Western blot after DNMT1 gene was silenced.
RESULTS:
The expression level of DNMT1 mRNA and its related protein in the experimental group were significantly lower than those in the control group and negative control group (P<0.05). After 72 hours of successful transfection, the WIF-1 gene in the control group and negative control group were completely methylated, while in the experimental group, the methylation level significantly decreased. The results of MSP showed that the PCR product amplified by the unmethylated WIF-1 primer in the experimental group increased significantly,while by the methylated WIF-1 primer decreased significantly. After 48 h of transfection, the OD value, viable cell number and colony formation of the cells in experimental group were significantly lower than those in the negative control group and the control group (P<0.05). The apoptosis rate of the cells in experimental group was significantly higher than those in the negative control group and control group (P<0.05). The expression levels of β- actin, myc, cyclin D1 and TCF-1 in K562 cells in the experimental group were significantly lower than those in the negative control group and control group (P<0.05).
CONCLUSION
Silencing DNMT1 gene can inhibit the proliferation and promote the apoptosis of K562 cells. The mechanism may be related to reverse the hypermethylation level of the WIF-1 gene promoter, thereby inhibit the activity of the Wnt/β- catenin signaling pathway.
Adaptor Proteins, Signal Transducing/metabolism*
;
DNA Methylation
;
Humans
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics*
;
Repressor Proteins/metabolism*

Result Analysis
Print
Save
E-mail