1.Activation of NF-κB and AP-1 Mediates Hyperproliferation by Inducing β-Catenin and c-Myc in Helicobacter pylori-Infected Gastric Epithelial Cells.
Eunyoung BYUN ; Bohye PARK ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(3):647-651
PURPOSE: In the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients with gastritis or adenocarcinoma, proliferation of gastric epithelial cells is increased. Hyperproliferation is related to induction of oncogenes, such as β-catenin and c-myc. Even though transcription factors NF-κB and AP-1 are activated in H. pylori-infected cells, whether NF-κB or AP-1 regulates the expression of β-catenein or c-myc in H. pylori-infected cells has not been clarified. The present study was undertaken to investigate whether H. pylori-induced activation of NF-κB and AP-1 mediates the expression of oncogenes and hyperproliferation of gastric epithelial cells. MATERIALS AND METHODS: Gastric epithelial AGS cells were transiently transfected with mutant genes for IκBα (MAD3) and c-Jun (TAM67) or treated with a specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) or a selective AP-1 inhibitor SR-11302 to suppress activation of NF-κB or AP-1, respecively. As reference cells, the control vector pcDNA was transfected to the cells. Wild-type cells or transfected cells were cultured with or without H. pylori. RESULTS: H. pylori induced activation of NF-κB and AP-1, cell proliferation, and expression of oncogenes (β-catenein, c-myc) in AGS cells, which was inhibited by transfection of MAD3 and TAM67. Wild-type cells and the cells transfected with pcDNA showed similar activities of NF-κB and AP-1, proliferation, and oncogene expression regardless of treatment with H. pylori. Both CAPE and SR-11302 inhibited cell proliferation and expression of oncogenes in H. pylori-infected cells. CONCLUSION: H. pylori-induced activation of NF-κB and AP-1 regulates transcription of oncogenes and mediates hyperproliferation in gastric epithelial cells.
Blotting, Western
;
Caffeic Acids
;
Cell Line, Tumor
;
Cell Proliferation
;
DNA, Bacterial/analysis/genetics
;
DNA-Binding Proteins/*metabolism
;
Epithelial Cells/*metabolism
;
Gastric Mucosa/*metabolism/pathology
;
Gastritis/pathology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/metabolism/pathology/physiopathology
;
Helicobacter pylori/pathogenicity/physiology
;
Humans
;
NF-kappa B/antagonists & inhibitors/*biosynthesis/metabolism
;
Peptide Fragments
;
Phenylethyl Alcohol/analogs & derivatives
;
Proto-Oncogene Proteins c-jun
;
Repressor Proteins
;
Transcription Factor AP-1/*biosynthesis
;
Transcription Factors/*metabolism
;
beta Catenin/*metabolism
2.Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells.
Run-Sheng GUO ; Yue YU ; Jun CHEN ; Yue-Yu CHEN ; Na SHEN ; Ming QIU
Chinese Medical Journal 2016;129(12):1439-1446
BACKGROUNDBrain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers. However, its role in thyroid cancer has not been investigated yet. In the present study, the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated.
METHODSBASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed. pcDNA-BASP1 carrying full length of BASP1 cDNA was constructed to restore the expression of BASP1 in thyroid cancer cell lines (BHT-101 and KMH-2). The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models, respectively. Cell cycle distribution after transfection was analyzed using flow cytometry. Cell apoptosis after transfection was examined by annexin V/propidium iodide assay. The migration was examined using transwell assay.
RESULTSBASP1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P = 0.000). pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P = 0.000). pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells. In addition, pcDNA-BASP1 significantly inhibited the cell migration.
CONCLUSIONSDownregulation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer. Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells, which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer.
Aged ; Animals ; Apoptosis ; genetics ; physiology ; Calmodulin-Binding Proteins ; genetics ; metabolism ; Cell Cycle ; genetics ; physiology ; Cell Line, Tumor ; Cell Movement ; genetics ; physiology ; Cell Proliferation ; genetics ; physiology ; Cytoskeletal Proteins ; genetics ; metabolism ; Female ; Gene Expression Regulation, Neoplastic ; genetics ; physiology ; Humans ; Male ; Membrane Proteins ; genetics ; metabolism ; Mice ; Mice, Nude ; Middle Aged ; Nerve Tissue Proteins ; genetics ; metabolism ; Repressor Proteins ; genetics ; metabolism ; Thyroid Neoplasms ; metabolism ; pathology ; Xenograft Model Antitumor Assays
3.PRDM14 promotes the migration of human non-small cell lung cancer through extracellular matrix degradation in vitro.
Hong-Xia BI ; Han-Bing SHI ; Ting ZHANG ; Ge CUI
Chinese Medical Journal 2015;128(3):373-377
BACKGROUNDAs a novel molecular markerof non-small cell lung cancer (NSCLC), PRDI-BF1 and RIZ homology domain containing protein 14 (PRDM14) is over-expressed in NSCLC tumor tissues. Extracellular matrix degradation mediated by the balance between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) is one of the most important mechanism in lung cancer metastasis. This study aimed to determine if PRDM14 promoted the migration of NSCLC cells through extracellular matrix degradation mediated by change of MMP/TIMP expression.
METHODSThe expression of PRDM14 was down-regulated in human cell line A 549 after transfection with lentiviral vector-mediated short-hairpin ribonucleic acids (shRNAs) which targeted the PRDM14 promoter. Cellular migration of shRNA-infected cells was detected by a scratch wound healing assay and transwell cell migration assay. Expression levels of MMP1, MMP2, TIMP1, and TIMP2 were measured by quantitative real-time polymerase chain reaction (RT-PCR).
RESULTSMigration of PRDM14-shRNA-infected cells was significantly inhibited relative to control cells as measured by the scratch wound healing (P < 0.05) and transwell cell migration assays (P < 0.01). The expression of MMP1 in A549 cells infected by PRDM14-shRNA was down-regulated significantly (P < 0.01), whereas the expression of TIMP1 and TIMP2 was up-regulated significantly (P < 0.01).
CONCLUSIONSPRDM14 accelerates A549 cells migration in vitro through extracellular matrix degradation. PRDM14 is considered as a potential therapeutic target in metastatic NSCLC.
Carcinoma, Non-Small-Cell Lung ; metabolism ; Cell Line, Tumor ; Cell Movement ; genetics ; physiology ; Extracellular Matrix ; metabolism ; Humans ; Matrix Metalloproteinase 1 ; metabolism ; Matrix Metalloproteinase 2 ; metabolism ; Neoplasm Metastasis ; genetics ; Repressor Proteins ; metabolism ; Tissue Inhibitor of Metalloproteinase-1 ; metabolism ; Tissue Inhibitor of Metalloproteinase-2 ; metabolism
4.Circadian regulation of low density lipoprotein receptor promoter activity by CLOCK/BMAL1, Hes1 and Hes6.
Yeon Ju LEE ; Dong Hee HAN ; Youngmi Kim PAK ; Sehyung CHO
Experimental & Molecular Medicine 2012;44(11):642-652
Low density lipoprotein receptor (LDLR) plays an important role in the cholesterol homeostasis. We examined the possible circadian regulation of LDLR and mechanism(s) underlying it. In mice, blood glucose and plasma triglyceride, total and high density lipoprotein cholesterol varied distinctively throughout a day. In addition, LDLR mRNA oscillated in the liver in a functional clock-dependent manner. Accordingly, analysis of human LDLR promoter sequence revealed three putative E-boxes, raising the possible regulation of LDLR expression by E-box-binding transcription factors. To test this possibility, human LDLR promoter reporter constructs were transfected into HepG2 cells and the effects of CLOCK/BMAL1, Hes1, and Hes6 expression were analyzed. It was found that positive circadian transcription factor complex CLOCK/BMAL1 upregulated human LDLR promoter activity in a serum-independent manner, while Hes family members Hes1 and Hes6 downregulated it only under serum-depleted conditions. Both effects were mapped to proximal promoter region of human LDLR, where mutation or deletion of well-known sterol regulatory element (SRE) abolished only the repressive effect of Hes1. Interestingly, hes6 and hes1 mRNA oscillated in an anti-phasic manner in the wild-type but not in the per1-/-per2-/- mouse. Comparative analysis of mouse, rat and human hes6 genes revealed that three E-boxes are conserved among three species. Transfection and site-directed mutagenesis studies with hes6 reporter constructs confirmed that the third E-box in the exon IV is functionally induced by CLOCK/BMAL1. Taken together, these results suggest that LDLR expression is under circadian control involving CLOCK/BMAL1 and Hes family members Hes1 and Hes6.
ARNTL Transcription Factors/physiology
;
Animals
;
Base Sequence
;
Basic Helix-Loop-Helix Transcription Factors/*genetics/metabolism/physiology
;
CLOCK Proteins/physiology
;
Cholesterol/blood
;
*Circadian Rhythm
;
E-Box Elements
;
Exons
;
*Gene Expression Regulation
;
Hep G2 Cells
;
Homeodomain Proteins/*genetics/metabolism/physiology
;
Homeostasis
;
Humans
;
Liver/metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
*Promoter Regions, Genetic
;
Receptors, LDL/*genetics/metabolism
;
Repressor Proteins/*genetics/metabolism/physiology
;
Transcription, Genetic
5.Identification of Max binding protein as a novel binding protein of Nck1 and characterization of its role in inhibiting human liver cancer SK-HEP-1 cells.
Qi ZHOU ; Tao HUANG ; Ya-feng WANG ; Kun-sun ZHANG ; Dong CHEN ; Bao-gang PENG
Chinese Medical Journal 2012;125(18):3336-3339
BACKGROUNDThe tendency of tumor cells to disperse throughout the liver is a distinct feature of hepatocellular carcinoma (HCC). Nck family adaptor proteins function to regulate actin cytoskeletal reorganization that leads to cell motility. We previously found that Max binding protein (MNT) was differentially expressed in HCC, and interacted with Nck1 by 2-DE. MNT is a protein member of the Myc/Max/Mad network which plays roles in cell proliferation, differentiation, and death. We investigated the effects of MNT on migration of human liver cancer SK-HEP-1 cells to study the migration regulatory role of MNT in HCC cells.
METHODSInteraction between MNT and Nck1 was further validated in hepatoma cells by GST-pull down assay and immunoprecipitation. siRNAs specific to MNT (MNT siRNA) were used to knockdown MNT expression. Western blotting, transwell assay were used to determine the migration potential of cells.
RESULTSInteraction between MNT and Nck1 was validated in hepatoma cells. MNT knockdown promoted the migration of human liver cancer SK-HEP-1 cells (P < 0.01).
CONCLUSIONThe results suggest that MNT, via interaction with Nck1, inhibits hepatoma cell migration.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; genetics ; metabolism ; Blotting, Western ; Cell Differentiation ; genetics ; physiology ; Cell Line, Tumor ; Cell Movement ; genetics ; physiology ; Humans ; Immunoprecipitation ; Liver Neoplasms ; Oncogene Proteins ; genetics ; metabolism ; Protein Binding ; genetics ; physiology ; Repressor Proteins ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction
6.PPARγ up-regulates TGFβ/smad signal pathway repressor c-Ski.
Gong-bo LI ; Jun LI ; Yi-jun ZENG ; Dan ZHONG ; Geng-ze WU ; Xiao-hong FU ; Feng-tian HE ; Shuang-shuang DAI
Acta Physiologica Sinica 2011;63(1):62-68
TGFβ/smad pathway is recognized as an important signal pathway to promote the pathogenesis of atherosclerosis (AS). Peroxisome proliferator-activated receptor γ (PPARγ) activation is considered to be important in modulating AS. Herein, we investigated the regulation of PPARγ on c-Ski, the repressor of TGFβ/smad pathway, in rat AS model and cultured vascular smooth muscle cells (VSMCs). c-Ski mRNA and protein expression were detected by real-time PCR and Western blot, respectively, in vivo and in vitro with treatment of PPARγ agonist rosiglitazone and antagonist GW9662. The proliferation and collagen secretion of VSMCs after c-Ski transfection were investigated. The underlying mechanism was further investigated by online program NUBIScan and luciferase reporter gene analysis. Results showed that both mRNA and protein expressions of c-Ski in the AS lesions was down-regulated in vivo, while in cultured VSMCs, c-Ski transfection significantly suppressed the proliferation and collagen secretion of rat VSMCs. Rosiglitazone significantly up-regulated mRNA and protein levels of c-Ski in VSMCs, which could be blocked by GW9662. Online NUBIScan analysis suggested possible PPARγ binding sites in the promoter region of c-Ski. In addition, luciferase activity of c-Ski reporter gene was also increased obviously in the presence of rosiglitazone. These results indicate that c-Ski is one of the newly found target genes of PPARγ and thus involved in the anti-AS effect of PPARγ.
Anilides
;
pharmacology
;
Animals
;
Atherosclerosis
;
physiopathology
;
Cells, Cultured
;
Male
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
metabolism
;
PPAR gamma
;
agonists
;
antagonists & inhibitors
;
physiology
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Wistar
;
Repressor Proteins
;
genetics
;
metabolism
;
Signal Transduction
;
Smad Proteins
;
metabolism
;
Thiazolidinediones
;
pharmacology
;
Transforming Growth Factor beta
;
metabolism
;
Up-Regulation
7.Effects of hepatocyte growth factor-mediated activation of Dll4-Notch-Hey2 signaling pathway.
Yu-Fang GAO ; Xiao-Qin HA ; Tong-de LÜ ; Juan-Ping HAN
Chinese Medical Journal 2011;124(1):127-131
BACKGROUNDHepatocyte growth factor (HGF) treats ischemic disease by promoting arteriogenesis, however, its mechanism of action is not known. The notch signaling pathway plays an important role in neovascularization. The relationship between the proliferation and migration ability of artery endothelial cells and the Dll4-Notch-Hey2 signaling pathway in the process of arteriogenesis was investigated as a mechanism of action of HGF.
METHODSBased on the prophase study cells and supernatant were harvested at the indicated time after human femoral artery endothelial cells (HFAECs) were infected with adenovirus-HGF (Ad-HGF) at 200 pfu/cell. Cells were analyzed for HGF expression and Notch1, Dll4 and Hey2 expression by ELISA and reverse transcription-PCR (RT-PCR). The changes in the proliferation and migration ability of HFAECs were observed by MTT and Transwell migration experiments. Ad-GFP-infected HFAECs were used as control.
RESULTSCompared with the control group the Ad-HGF group's HGF expression was not increased with time, and the induction by HGF of Notch1, Dll4 and Hey2 gene transcription was not enhanced with an increase of HGF. The proliferation ability of Ad-HGF-transduced HFAECs was enhanced and their migration ability was also enhanced in the presence of HGF.
CONCLUSIONSThrough activating the Dll4-Notch-Hey2 signaling pathway, HGF indirectly promotes the proliferation and migration ability of cells, so that offspring artery branches are formed.
Basic Helix-Loop-Helix Transcription Factors ; genetics ; metabolism ; Cell Line ; Enzyme-Linked Immunosorbent Assay ; Hepatocyte Growth Factor ; genetics ; metabolism ; Humans ; Intercellular Signaling Peptides and Proteins ; genetics ; metabolism ; Receptors, Notch ; genetics ; metabolism ; Repressor Proteins ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; genetics ; physiology
8.Co-culture with microglia promotes neural stem cells differentiation into astrocytes.
Feng GU ; Juan WANG ; Li FU ; Yong-Jie MA
Chinese Medical Journal 2011;124(20):3394-3398
BACKGROUNDNeural stem cells (NSCs) are a self-renewing and multipotent population of the central nervous system (CNS), which are active during development and maintain homeostasis and tissue integrity throughout life. Microglias are an immune cell population resident in the CNS, which have crucial physiological functions in the developing and adult CNS. This study aimed to investigate that whether microglia co-cultured with NSCs could promote astrogliogenesis from NSCs.
METHODSMicroglia and NSCs were co-cultured in 24-well insert plates. NSCs were plated in the bottom of the well and microglia in the insert. Fluorescent staining, Western blotting and RT-PCR were used to determine the effect of microglia on NSCs differentiation.
RESULTSCo-culture of microglia and NSCs promoted astrogliogenesis from NSCs. Several key genes, such as Notch 1, Notch 2, Notch 3, Hes 5, and NRSF were downregulated, while the critical genes Id1 and Id2 were upregulated. BMP2 and FGF2 were upregulated.
CONCLUSIONMicroglias act as a regulator of NSCs astrogliogenesis.
Animals ; Astrocytes ; cytology ; metabolism ; Basic Helix-Loop-Helix Transcription Factors ; genetics ; Blotting, Western ; Bone Morphogenetic Protein 2 ; genetics ; Cell Differentiation ; genetics ; physiology ; Cells, Cultured ; Coculture Techniques ; methods ; Fibroblast Growth Factor 2 ; genetics ; Inhibitor of Differentiation Protein 1 ; genetics ; Inhibitor of Differentiation Protein 2 ; genetics ; Microglia ; cytology ; metabolism ; Microscopy, Fluorescence ; Neural Stem Cells ; cytology ; metabolism ; Rats ; Repressor Proteins ; genetics ; Reverse Transcriptase Polymerase Chain Reaction
9.Silencing suppressors: viral weapons for countering host cell defenses.
Liping SONG ; Shijuan GAO ; Wei JIANG ; Shuai CHEN ; Yanjun LIU ; Ling ZHOU ; Wenlin HUANG
Protein & Cell 2011;2(4):273-281
RNA silencing is a conserved eukaryotic pathway involved in the suppression of gene expression via sequence-specific interactions that are mediated by 21-23 nt RNA molecules. During infection, RNAi can act as an innate immune system to defend against viruses. As a counter-defensive strategy, silencing suppressors are encoded by viruses to inhibit various stages of the silencing process. These suppressors are diverse in sequence and structure and act via different mechanisms. In this review, we discuss whether RNAi is a defensive strategy in mammalian host cells and whether silencing suppressors can be encoded by mammalian viruses. We also review the modes of action proposed for some silencing suppressors.
Animals
;
Gene Expression Regulation, Viral
;
Gene Silencing
;
Host-Pathogen Interactions
;
Humans
;
Mammals
;
virology
;
MicroRNAs
;
genetics
;
metabolism
;
Plant Viruses
;
physiology
;
Plants
;
virology
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Repressor Proteins
;
genetics
;
metabolism
;
Viral Proteins
;
genetics
;
metabolism
;
Viruses
;
growth & development
10.Helicobacter pylori Urease Activity is Influenced by Ferric Uptake Regulator.
Jong Seung LEE ; Yon Ho CHOE ; Ji Hyuk LEE ; Hye Jin LEE ; Jee Hyun LEE ; Young Ok CHOI
Yonsei Medical Journal 2010;51(1):39-44
PURPOSE: The role of the Ferric Uptake Regulator (FUR) in the acid resistance of Helicobacter pylori (H. pylori) has been thought to be independent of urease. However, we demonstrated in this study that Fur influences urease activity. MATERIALS AND METHODS: A fur knockout mutant of H. pylori was constructed by replacing the Fur gene with a kanamycin resistant marker gene. The wild-type H. pylori and fur mutant were compared for survival. The integrity of the inner membrane of the bacteria was evaluated by confocal microscopy using membrane-permeant and -impermeant fluorescent DNA probes. Urease activity of intact H. pylori was measured between pH 3 and 8. Real time PCR of both strains was performed for urease genes including ureI, ureE, ureF, ureG, and ureH. RESULTS: The fur deletion affected the survival of H. pylori at pH 4. The urease activity curve of the intact fur mutant showed the same shape as the wild-type but was 3-fold lower than the wild-type at a pH of less than 5. Real time PCR revealed that the expression of all genes was consistently down-regulated in the fur mutant. CONCLUSION: The results of this study showed that fur appears to be involved in acid resistant H. pylori urease activity.
Bacterial Proteins/genetics/*physiology
;
Helicobacter pylori/*enzymology/genetics
;
Hydrogen-Ion Concentration
;
Microscopy, Confocal
;
Models, Biological
;
Mutation
;
Repressor Proteins/genetics/*physiology
;
Urease/*metabolism

Result Analysis
Print
Save
E-mail