1.Knockdown of RFC4 inhibits the cell proliferation of nasopharyngeal carcinoma in vitro and in vivo.
Shuzhen GUAN ; Lin FENG ; Jinrui WEI ; Guizhen WANG ; Lichuan WU
Frontiers of Medicine 2023;17(1):132-142
Nasopharyngeal carcinoma (NPC) is a malignant tumor that mainly occurs in East and Southeast Asia. Although patients benefit from the main NPC treatments (e.g., radiotherapy and concurrent chemotherapy), persistent and recurrent diseases still occur in some NPC patients. Therefore, investigating the pathogenesis of NPC is of great clinical significance. In the present study, replication factor c subunit 4 (RFC4) is a key potential target involved in NPC progression via bioinformatics analysis. Furthermore, the expression and mechanism of RFC4 in NPC were investigated in vitro and in vivo. Our results revealed that RFC4 was more elevated in NPC tumor tissues than in normal tissues. RFC4 knockdown induced G2/M cell cycle arrest and inhibited NPC cell proliferation in vitro and in vivo. Interestingly, HOXA10 was confirmed as a downstream target of RFC4, and the overexpression of HOXA10 attenuated the silencing of RFC4-induced cell proliferation, colony formation inhibition, and cell cycle arrest. For the first time, this study reveals that RFC4 is required for NPC cell proliferation and may play a pivotal role in NPC tumorigenesis.
Humans
;
Nasopharyngeal Carcinoma/pathology*
;
Carcinoma/pathology*
;
Replication Protein C/metabolism*
;
Nasopharyngeal Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Cell Movement
2.TRIM25 inhibits HBV replication by promoting HBx degradation and the RIG-I-mediated pgRNA recognition.
Hongxiao SONG ; Qingfei XIAO ; Fengchao XU ; Qi WEI ; Fei WANG ; Guangyun TAN
Chinese Medical Journal 2023;136(7):799-806
BACKGROUND:
The hepatitis B virus (HBV) vaccine has been efficiently used for decades. However, hepatocellular carcinoma caused by HBV is still prevalent globally. We previously reported that interferon (IFN)-induced tripartite motif-containing 25 (TRIM25) inhibited HBV replication by increasing the IFN expression, and this study aimed to further clarify the anti-HBV mechanism of TRIM25.
METHODS:
The TRIM25-mediated degradation of hepatitis B virus X (HBx) protein was determined by detecting the expression of HBx in TRIM25-overexpressed or knocked-out HepG2 or HepG2-NTCP cells via Western blotting. Co-immunoprecipitation was performed to confirm the interaction between TRIM25 and HBx, and colocalization of TRIM25 and HBx was identified via immunofluorescence; HBV e-antigen and HBV surface antigen were qualified by using an enzyme-linked immunosorbent assay (ELISA) kit from Kehua Biotech. TRIM25 mRNA, pregenomic RNA (pgRNA), and HBV DNA were detected by quantitative real-time polymerase chain reaction. The retinoic acid-inducible gene I (RIG-I) and pgRNA interaction was verified by RNA-binding protein immunoprecipitation assay.
RESULTS:
We found that TRIM25 promoted HBx degradation, and confirmed that TRIM25 could enhance the K90-site ubiquitination of HBx as well as promote HBx degradation by the proteasome pathway. Interestingly, apart from the Really Interesting New Gene (RING) domain, the SPRY domain of TRIM25 was also indispensable for HBx degradation. In addition, we found that the expression of TRIM25 increased the recognition of HBV pgRNA by interacting with RIG-I, which further increased the IFN production, and SPRY, but not the RING domain is critical in this process.
CONCLUSIONS
The study found that TRIM25 interacted with HBx and promoted HBx-K90-site ubiquitination, which led to HBx degradation. On the other hand, TRIM25 may function as an adaptor, which enhanced the recognition of pgRNA by RIG-I, thereby further promoting IFN production. Our study can contribute to a better understanding of host-virus interaction.
Humans
;
Hepatitis B virus
;
DEAD Box Protein 58/metabolism*
;
RNA
;
Liver Neoplasms
;
Virus Replication
;
Tripartite Motif Proteins/genetics*
;
Transcription Factors
;
Ubiquitin-Protein Ligases/genetics*
3.Virus hijacking ESCRT system to promote self-replication: a review.
Jun DAI ; Xusheng QIU ; Chan DING
Chinese Journal of Biotechnology 2023;39(10):3948-3965
Endosomal sorting complex required for transport (ESCRT) system drives various cellular processes, including endosome sorting, organelle biogenesis, vesicle transport, maintenance of plasma membrane integrity, membrane fission during cytokinesis, nuclear membrane reformation after mitosis, closure of autophagic vacuoles, and enveloped virus budding. Increasing evidence suggests that the ESCRT system can be hijacked by different family viruses for their proliferation. At different stages of the virus life cycle, viruses can interfere with or exploit ESCRT-mediated physiological processes in various ways to maximize their chance of infecting the host. In addition, many retroviral and RNA viral proteins possess "late domain" motifs, which can recruit host ESCRT subunit proteins to assist in virus endocytosis, transport, replicate, budding and efflux. Therefore, the "late domain" motifs of viruses and ESCRT subunit proteins could serve as promising drug targets in antiviral therapy. This review focuses on the composition and functions of the ESCRT system, the effects of ESCRT subunits and virus "late domain" motifs on viral replication, and the antiviral effects mediated by the ESCRT system, aiming to provide a reference for the development and utilization of antiviral drugs.
Endosomal Sorting Complexes Required for Transport/metabolism*
;
Viruses/metabolism*
;
Protein Transport
;
Virus Replication
;
Endosomes/metabolism*
;
Virus Release
5.Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2.
Rui XIONG ; Leike ZHANG ; Shiliang LI ; Yuan SUN ; Minyi DING ; Yong WANG ; Yongliang ZHAO ; Yan WU ; Weijuan SHANG ; Xiaming JIANG ; Jiwei SHAN ; Zihao SHEN ; Yi TONG ; Liuxin XU ; Yu CHEN ; Yingle LIU ; Gang ZOU ; Dimitri LAVILLETE ; Zhenjiang ZHAO ; Rui WANG ; Lili ZHU ; Gengfu XIAO ; Ke LAN ; Honglin LI ; Ke XU
Protein & Cell 2020;11(10):723-739
Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.
Animals
;
Antiviral Agents
;
pharmacology
;
therapeutic use
;
Betacoronavirus
;
drug effects
;
physiology
;
Binding Sites
;
drug effects
;
Cell Line
;
Coronavirus Infections
;
drug therapy
;
virology
;
Crotonates
;
pharmacology
;
Cytokine Release Syndrome
;
drug therapy
;
Drug Evaluation, Preclinical
;
Gene Knockout Techniques
;
Humans
;
Influenza A virus
;
drug effects
;
Leflunomide
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
Oseltamivir
;
therapeutic use
;
Oxidoreductases
;
antagonists & inhibitors
;
metabolism
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
virology
;
Protein Binding
;
drug effects
;
Pyrimidines
;
biosynthesis
;
RNA Viruses
;
drug effects
;
physiology
;
Structure-Activity Relationship
;
Toluidines
;
pharmacology
;
Ubiquinone
;
metabolism
;
Virus Replication
;
drug effects
6.NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage.
Junhong GUAN ; Shuyu YU ; Xiaofeng ZHENG
Protein & Cell 2018;9(4):365-379
NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to HO stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to HO-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.
DNA Damage
;
drug effects
;
DNA Repair
;
genetics
;
DNA Replication
;
genetics
;
DNA-Binding Proteins
;
genetics
;
DNA-Directed DNA Polymerase
;
genetics
;
Endopeptidases
;
genetics
;
Gene Knockout Techniques
;
Humans
;
Hydrogen Peroxide
;
toxicity
;
NEDD8 Protein
;
genetics
;
Oxidative Stress
;
genetics
;
Proliferating Cell Nuclear Antigen
;
genetics
;
Ubiquitin-Conjugating Enzymes
;
genetics
;
Ubiquitin-Protein Ligases
;
genetics
;
Ubiquitination
;
genetics
;
Ultraviolet Rays
7.RNA binding protein 24 regulates the translation and replication of hepatitis C virus.
Huang CAO ; Kaitao ZHAO ; Yongxuan YAO ; Jing GUO ; Xiaoxiao GAO ; Qi YANG ; Min GUO ; Wandi ZHU ; Yun WANG ; Chunchen WU ; Jizheng CHEN ; Yuan ZHOU ; Xue HU ; Mengji LU ; Xinwen CHEN ; Rongjuan PEI
Protein & Cell 2018;9(11):930-944
The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5'-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5'-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5'- and 3'-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication.
Cells, Cultured
;
Hepacivirus
;
genetics
;
growth & development
;
metabolism
;
Humans
;
Protein Biosynthesis
;
RNA-Binding Proteins
;
metabolism
;
Virus Replication
;
genetics
8.Delayed DNA double-strand break in S-phase H1299 cells after thermal damage.
Ting SUN ; Wei-Min DING ; Ling LI ; Yan ZHANG
Journal of Southern Medical University 2016;36(4):472-476
OBJECTIVETo study the pattern of DNA double-strand break (DSB) formation in S-phase cells after thermal damage and explore the mechanisms behind heat sensitivity of S-phase cells and delayed DSBs.
METHODSFlow cytometry was used to analyze the cell cycle arrest in H1299 cells exposed to thermal damage, and EdU incorporation assay was employed to evaluate the DNA replication capacity of the cells. The cells synchronized in S phase were obtained by serum starvation and DSBs were observed dynamically using neutral comet assay. Trypan blue dye exclusion technique was used to analyze the cell viability after thermal damage. Western blotting (WB) was used to detect the phosphorylation of ATM and DNA binding RAD18.
RESULTSThe percentage of S-phase cells increased significantly after exposure of the cells to 45 degrees celsius; for 1 h (P<0.01). The time-dependent variation pattern of EdU incorporation was similar to that of S-phase cell fraction. The comet tail began to appear only after incubation of the cells at 37 degrees celsius; for some time and the Olive tail moment (OTM) increased with prolonged incubation. Cell death remained low until 7.5 h after heat exposure of the S-phase cells and then increased rapidly. The phosphorylation of ATM first increased but then decreased drastically. In cells with heat exposure, DNA binding RAD18 was attenuated obviously compared that in non-exposed cells.
CONCLUSIONThermal damage causes cell cycle arrest in S phase, and delayed fatal DSBs occur in the arrested cells due to persistent replication and DNA damage repair suppression, which are the possible cause of heat sensitivity of S-phase cells.
Ataxia Telangiectasia Mutated Proteins ; metabolism ; Cell Cycle Checkpoints ; Cell Line ; Cell Survival ; Comet Assay ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA Replication ; DNA-Binding Proteins ; metabolism ; Hot Temperature ; Humans ; Phosphorylation ; S Phase ; Ubiquitin-Protein Ligases
9.Construction and identification of HSV-1 vector vaccine carrying HIV-1 antigen.
Xiaofei ZHAO ; Jingxia GUO ; Xiaojuan LIU ; Zhenghai MA
Chinese Journal of Biotechnology 2015;31(3):384-393
To construct an HSV-1 vector vaccine carrying HIV-1 antigens, HIV-1 gp160, gag, protease and the expression elements were chained together, and then inserted into the internal inverted repeat sequence region of HSV-1 by bacterial artificial chromosome technology. Firstly, HIV-1 gp160 (including type B and C), gag and protease genes were cloned into pcDNA3 in series to generate the pcDNA/gBgp and pcDNA/gCgp, then the recombinant plasmids were transfected into 293FT cells, and HIV-1 antigen was detected from transfected cells by Western blotting. Then the expression cassettes from pcDNA/gBgp and pcDNA/gCgp, comprising HIV-1 antigen genes and expression elements, were cloned into pKO5/BN to generate the shuttle plasmids pKO5/BN/gBgp and pKO5/BN/gCgp. The shuttle plasmids were electroporated into E. coli cells that harbor an HSV-BAC, the recombinant bacteria were screened, and the recombinant DNA was extracted and transfected into Vero cells. The recombinant virus was purified through picking plaques, the virus' DNAs were identified by Southern blotting; HIV-1 antigen was detected from the recombinant HSV-1 infected cells by Western blotting, and the virus' replication competent was analyzed. As the results, gp160 and gag proteins were detected from 293FT cells transfected with pcDNA/gBgp and pcDNA/gCgp by Western blotting. The recombinant bacteria were generated from the E. coli electroporated with pKO5/BN/gBgp or pKO5/BN/gCgp. The recombinant HSV was purified from the Vero cells transfected with the recombinant DNA, the unique DNA fragment was detected from the genome of recombination HSV by Southern blotting; gp120 and gp41 were detected from the infected cells by Western blotting, and the recombinant HSV retained replication competent in mammalian cells. The results indicate that the recombinant HSV carrying HIV-1 gp160, gag and protease genes was generated, the virus retains replication competent in mammalian cells, and could be used as a replicated viral vector vaccine.
Animals
;
Cercopithecus aethiops
;
Chromosomes, Artificial, Bacterial
;
DNA, Recombinant
;
genetics
;
DNA, Viral
;
genetics
;
Escherichia coli
;
HIV Antigens
;
genetics
;
immunology
;
HIV Envelope Protein gp160
;
genetics
;
immunology
;
HIV Protease
;
genetics
;
immunology
;
Herpes Simplex Virus Vaccines
;
immunology
;
Herpesvirus 1, Human
;
physiology
;
Plasmids
;
Transfection
;
Vero Cells
;
Virus Replication
;
gag Gene Products, Human Immunodeficiency Virus
;
genetics
;
immunology
10.Replication kinetic properties of HIV-1 CRF_BC novel drug resistance associated mutations.
Yang JIAO ; Yang HUANG ; Shuming LI ; Zhenpeng LI ; Yan WANG ; Qianqian YIN ; Liying MA
Chinese Journal of Preventive Medicine 2015;49(5):436-440
OBJECTIVETo study the drug sensitivity and analyze the replication kinetics of HIV-1 B and CRF07_BC subtypes with I132L or T139K/R mutations.
METHODSThe amino acids in position 132 and 139 of reverse transcriptase (RT) region of the infectious clone PNL4-3 (HIV-1 B subtype) were changed to L and T/R through site mutagenesis. Combined with the previously constructed infectious clone of HIV-1 CRF07_BC subtype with I132L and T139K/R mutations in RT region, mutated PNL4-3 infectious clones were transfected into 293T cells. The infection ability of mutated clones was detected. The drug sensitivity to NNRTIs (TMC-125, DLV, NVP, EFV) and the properties of replication kinetics were also evaluated.
RESULTSThe mutated infectious clones were constructed including PNL4-3-RT-I132L, PNL4-3-RT-T139K and PNL4-3-RT-T139R. The I132L and T139K/R mutations in HIV-1 B and CRF07_BC infectious clones reduced their drug sensitivity to NNRTIs, which accompanied with the increase of EC50 (concentration for 50% of maximal effect). In subtype CRF07_BC, I132L mutation increased EC50 by 2.55, 19.35, 28.05, 6.13 fold, T139K mutation increased EC50 by 4.67, 3.66, 7.35, 3.30 fold, and T139R mutation increased EC50 by 1.82, 4.69, 25.12, 1.89 fold, respectively. In subtype B, I132L increased EC50 by 3.91, 4.61, 6.38, 3.56 fold, T139K increased EC50 by 3.13, 1.78, 2.26, 2.10 fold, T139R increased EC50 by 5.79, 3.99, 5.78, 2.75 fold, respectively. Similar as wild type PNL4-3, the replication ability of 132L/139K/139R mutated infectious clones reached the peak in day 11. However, compared to wild type BC-WT, I132L/T139R mutations delayed the peak time to day 14 and 21.
CONCLUSIONThe novel drug resistance associated mutations I132L and T139K/R can reduce the drug sensitivity to NNRTIs in subtype B and CRF07_BC, and the replication ability of CRF_07BC declined by I132L mutation.
Anti-HIV Agents ; Drug Resistance ; Genotype ; HIV-1 ; Kinetics ; Mutation ; Polymorphism, Single Nucleotide ; Protein Folding ; Pyridazines ; Reverse Transcriptase Inhibitors ; Virus Replication

Result Analysis
Print
Save
E-mail