1.Mechanism of Reactive Oxygen/Nitrogen Species in Liver Ischemia-Reperfusion Injury and Preventive Effect of Chinese Medicine.
Lei GAO ; Yun-Jia LI ; Jia-Min ZHAO ; Yu-Xin LIAO ; Meng-Chen QIN ; Jun-Jie LI ; Hao SHI ; Nai-Kei WONG ; Zhi-Ping LYU ; Jian-Gang SHEN
Chinese journal of integrative medicine 2025;31(5):462-473
Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.
Reperfusion Injury/drug therapy*
;
Reactive Oxygen Species/metabolism*
;
Reactive Nitrogen Species/metabolism*
;
Humans
;
Liver/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
2.Pharmacological inhibition of ENaC or NCX can attenuate hepatic ischemia-reperfusion injury exacerbated by hypernatremia.
Yabin CHEN ; Hao LI ; Peihao WEN ; Jiakai ZHANG ; Zhihui WANG ; Shengli CAO ; Wenzhi GUO
Journal of Zhejiang University. Science. B 2025;26(5):461-476
Donors with a serum sodium concentration of >155 mmol/L are extended criteria donors for liver transplantation (LT). Elevated serum sodium of donors leads to an increased incidence of hepatic dysfunction in the early postoperative period of LT; however, the exact mechanism has not been reported. We constructed a Lewis rat model of 70% hepatic parenchymal area subjected to ischemia-reperfusion (I/R) with hypernatremia and a BRL-3A cell model of hypoxia-reoxygenation (H/R) with high-sodium (HS) culture medium precondition. To determine the degree of injury, biochemical analysis, histological analysis, and oxidative stress and apoptosis detection were performed. We applied specific inhibitors of the epithelial sodium channel (ENaC) and Na+/Ca2+ exchanger (NCX) in vivo and in vitro to verify their roles in injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels and the area of hepatic necrosis were significantly elevated in the HS+I/R group. Increased reactive oxygen species (ROS) production, myeloperoxidase (MPO)-positive cells, and aggravated cellular apoptosis were detected in the HS+I/R group. The HS+H/R group of BRL-3A cells showed significantly increased cellular apoptosis and ROS production compared to the H/R group. The application of amiloride (Amil), a specific inhibitor of ENaC, reduced ischemia-reperfusion injury (IRI) aggravated by HS both in vivo and in vitro, as evidenced by decreased serum transaminases, inflammatory cytokines, apoptosis, and oxidative stress. SN-6, a specific inhibitor of NCX, had a similar effect to Amil. In summary, hypernatremia aggravates hepatic IRI, which can be attenuated by pharmacological inhibition of ENaC or NCX.
Animals
;
Reperfusion Injury/drug therapy*
;
Hypernatremia/complications*
;
Rats
;
Liver/metabolism*
;
Rats, Inbred Lew
;
Male
;
Apoptosis
;
Sodium-Calcium Exchanger/antagonists & inhibitors*
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress
;
Epithelial Sodium Channel Blockers/pharmacology*
;
Epithelial Sodium Channels
;
Cell Line
;
Liver Transplantation
3.6-Shogaol alleviates cerebral injury after cardiac arrest-cardiopulmonary resuscitation in rats by inhibiting death-associated protein kinase 1-mediated autophagy.
Ouyang RAO ; Shixin LI ; Ning ZHU ; Hangxiang ZHOU ; Jie HU ; Yun LI ; Junling TAO ; Yehong LI ; Ying LIU
Chinese Critical Care Medicine 2025;37(6):568-575
OBJECTIVE:
To observe the neuroprotective effect of 6-shogaol (6-SH) in global cerebral ischemia/reperfusion injury (CIRI) following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) in rats.
METHODS:
Computer-aided molecular docking was used to determine whether 6-SH could spontaneously bind to death-associated protein kinase 1 (DAPK1). SPF-grade male SD rats were randomly divided into a sham group (n = 5), a CPR group (n = 7), and a CPR+6-SH group (n = 7). The CPR group and CPR+6-SH group were further divided into 12-, 24-, and 48-hour subgroups based on observation time points. A rat model of global CIRI after CA-CPR was established by asphyxiation. In the sham group, only tracheal and vascular intubation was performed without asphyxia and CPR induction. The CPR group was intraperitoneally injected with 1 mL of normal saline immediately after successful modeling. The CPR+6-SH group received an intraperitoneal injection of 20 mg/kg 6-SH (1 mL) immediately after successful modeling, followed by administration every 12 hours until the endpoint. Neurological Deficit Score (NDS) was recorded at each time point after modeling. After completion of observation at each time point, rats were anesthetized and sacrificed, and brain tissue specimens were collected. Histopathological changes of neurons were observed under light microscopy after hematoxylin-eosin (HE) staining. Ultrastructural changes of hippocampal neurons and autophagy were observed by transmission electron microscopy (TEM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect mRNA expression levels of DAPK1, vacuolar protein sorting 34 (VPS34), Beclin1, and microtubule-associated protein 1 light chain 3 (LC3) in brain tissues. Western blotting was used to detect protein expression levels of DAPK1, phosphorylated DAPK1 at serine 308 (p-DAPK1 ser308), VPS34, Beclin1, and LC3. Immunofluorescence was used to observe Beclin1 and LC3 expression in brain tissues under a fluorescence microscope.
RESULTS:
Molecular docking results indicated that 6-SH could spontaneously bind to DAPK1. Compared with the sham group, the NDS scores of the CPR group rats were significantly increased at all modeling time points; under light microscopy, disordered cell arrangement, widened intercellular spaces, and edema were observed in brain tissues, with pyknotic and necrotic nuclei in some areas; under TEM, mitochondria were markedly swollen with intact membranes, dissolved matrix, reduced or disappeared cristae, vacuolization, and increased autophagosomes. Compared with the CPR group, the NDS scores of the CPR+6-SH group rats were significantly decreased at all modeling time points; under light microscopy, local neuronal edema and widened perinuclear space were observed; under TEM, mitochondria were mostly mildly swollen with intact membranes, fewer autophagosomes, and alleviated injury. RT-qPCR results showed that compared with the sham group, mRNA expression levels of DAPK1, VPS34, Beclin1, and LC3 in brain tissues were significantly upregulated in all CPR subgroups, with the most pronounced changes at 24 hours. Compared with the CPR group, the CPR+6-SH group showed significantly lower mRNA expression of the above indicators at each time point [24 hours post-modeling (relative expression): DAPK1 mRNA: 3.41±0.68 vs. 4.48±0.62; VPS34 mRNA: 3.63±0.49 vs. 4.66±1.18; Beclin1 mRNA: 3.08±0.49 vs. 4.04±0.22; LC3 mRNA: 2.60±0.36 vs. 3.67±0.62; all P < 0.05]. Western blotting results showed that compared with the sham group, the protein expression levels of DAPK1, VPS34, Beclin1, and LC3 in all CPR subgroups were significantly increased, while the expression of p-DAPK1 ser308 was significantly decreased, with the most pronounced changes observed in the CPR 24-hour subgroup. Compared with the CPR group, the CPR+6-SH subgroups exhibited significantly reduced protein expression of DAPK1, VPS34, Beclin1, and LC3 [24-hour post-modeling: DAPK1/β-actin: 1.88±0.22 vs. 2.47±0.22; VPS34/β-actin: 2.55±0.06 vs. 3.46±0.05; Beclin1/β-actin: 2.12±0.03 vs. 2.87±0.03; LC3/β-actin: 2.03±0.24 vs. 3.17±0.23; all P < 0.05]. Conversely, the expression of p-DAPK1 ser308 was significantly upregulated in the CPR+6-SH group compared to the CPR group [24-hour post-modeling: p-DAPK1 ser308/β-actin: 0.40±0.02 vs. 0.20±0.07, P < 0.05]. Under the fluorescence microscope, fluorescence intensities of Beclin1 and LC3 in the CPR 24-hour group were significantly higher than those in the sham 24-hour group; compared with the CPR 24-hour group, the CPR+6-SH 24-hour group showed significantly reduced fluorescence intensities of Beclin1 and LC3.
CONCLUSION
6-SH inhibited the expression of DAPK1, alleviated excessive autophagy after global CIRI following CA-CPR in rats, and exerted neuroprotective effects. The mechanism may be related to phosphorylation at the DAPK1 ser308 site.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Cardiopulmonary Resuscitation
;
Autophagy/drug effects*
;
Heart Arrest/therapy*
;
Death-Associated Protein Kinases/metabolism*
;
Reperfusion Injury/metabolism*
;
Disease Models, Animal
;
Neuroprotective Agents/pharmacology*
;
Brain Ischemia/metabolism*
4.Discovery of bioactive polycyclic polyprenylated acylphloroglucinol from Hypericum patulum that protects against hepatic ischemia/reperfusion injury.
Bo TAO ; Xiangli ZHAO ; Zhengyi SHI ; Jie LI ; Yulin DUAN ; Xiaosheng TAN ; Gang CHEN ; Changxing QI ; Yonghui ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1104-1110
Hepatic ischemia/reperfusion injury (IRI) remains a critical complication contributing to graft dysfunction following liver surgery. As part of an ongoing search for hepatoprotective natural products, five previously unreported homoadamantane-type polycyclic polyprenylated acylphloroglucinols (PPAPs), named hyperhomanoons A-E (1-5), and one known analog, hypersampsone O (6), were isolated from Hypericum patulum. Among these, compound 6 demonstrated potent protective effects against CoCl₂-induced hypoxic injury in hepatocytes. Furthermore, in a murine model of hepatic IRI induced by vascular occlusion, pretreatment with 6 markedly alleviated liver damage and reduced hepatocyte apoptosis. This study is the first to identify PPAPs as promising scaffolds for the development of therapeutic agents targeting hepatic IRI, underscoring their potential as lead compounds in drug discovery efforts for ischemic liver diseases.
Reperfusion Injury/prevention & control*
;
Animals
;
Hypericum/chemistry*
;
Phloroglucinol/administration & dosage*
;
Mice
;
Humans
;
Male
;
Liver/blood supply*
;
Apoptosis/drug effects*
;
Molecular Structure
;
Protective Agents/pharmacology*
;
Hepatocytes/drug effects*
;
Mice, Inbred C57BL
;
Liver Diseases/drug therapy*
5.Downregulation of cardiac PIASy inhibits Cx43 SUMOylation and ameliorates ventricular arrhythmias in a rat model of myocardial ischemia/reperfusion injury.
Tingting WANG ; Jinmin LIU ; Chenchen HU ; Xin WEI ; Linlin HAN ; Afang ZHU ; Rong WANG ; Zhijun CHEN ; Zhengyuan XIA ; Shanglong YAO ; Weike MAO
Chinese Medical Journal 2023;136(11):1349-1357
BACKGROUND:
Dysfunction of the gap junction channel protein connexin 43 (Cx43) contributes to myocardial ischemia/reperfusion (I/R)-induced ventricular arrhythmias. Cx43 can be regulated by small ubiquitin-like modifier (SUMO) modification. Protein inhibitor of activated STAT Y (PIASy) is an E3 SUMO ligase for its target proteins. However, whether Cx43 is a target protein of PIASy and whether Cx43 SUMOylation plays a role in I/R-induced arrhythmias are largely unknown.
METHODS:
Male Sprague-Dawley rats were infected with PIASy short hairpin ribonucleic acid (shRNA) using recombinant adeno-associated virus subtype 9 (rAAV9). Two weeks later, the rats were subjected to 45 min of left coronary artery occlusion followed by 2 h reperfusion. Electrocardiogram was recorded to assess arrhythmias. Rat ventricular tissues were collected for molecular biological measurements.
RESULTS:
Following 45 min of ischemia, QRS duration and QTc intervals statistically significantly increased, but these values decreased after transfecting PIASy shRNA. PIASy downregulation ameliorated ventricular arrhythmias induced by myocardial I/R, as evidenced by the decreased incidence of ventricular tachycardia and ventricular fibrillation, and reduced arrythmia score. In addition, myocardial I/R statistically significantly induced PIASy expression and Cx43 SUMOylation, accompanied by reduced Cx43 phosphorylation and plakophilin 2 (PKP2) expression. Moreover, PIASy downregulation remarkably reduced Cx43 SUMOylation, accompanied by increased Cx43 phosphorylation and PKP2 expression after I/R.
CONCLUSION
PIASy downregulation inhibited Cx43 SUMOylation and increased PKP2 expression, thereby improving ventricular arrhythmias in ischemic/reperfused rats heart.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
Connexin 43/genetics*
;
Sumoylation
;
Down-Regulation
;
Rats, Sprague-Dawley
;
Arrhythmias, Cardiac/drug therapy*
;
Myocardial Ischemia/metabolism*
;
RNA, Small Interfering/metabolism*
6.Effect of Xiaoxuming Decoction on synaptic plasticity following acute cerebral ischemia-reperfusion in rats.
Xue-Qin FU ; Rui LAN ; Yong ZHANG ; Man-Man WANG ; Xu-Huan ZOU ; Wei-Wei WANG
China Journal of Chinese Materia Medica 2023;48(14):3882-3889
This study aims to explore the effect of Xiaoxuming Decoction on synaptic plasticity in rats with acute cerebral ischemia-reperfusion. A rat model of cerebral ischemia-reperfusion injury was established by middle cerebral artery occlusion(MCAO). Rats were randomly assigned into a sham group, a MCAO group, and a Xiaoxuming Decoction(60 g·kg~(-1)·d~(-1)) group. The Longa score was rated to assess the neurological function of rats with cerebral ischemia for 1.5 h and reperfusion for 24 h. The 2,3,5-triphenyltetrazolium chloride(TTC) staining and hematoxylin-eosin(HE) staining were employed to observe the cerebral infarction and the pathological changes of brain tissue after cerebral ischemia, respectively. Transmission electron microscopy was employed to detect the structural changes of neurons and synapses in the ischemic penumbra, and immunofluorescence, Western blot to determine the expression of synaptophysin(SYN), neuronal nuclei(NEUN), and postsynaptic density 95(PSD95) in the ischemic penumbra. The experimental results showed that the modeling increased the Longa score and led to cerebral infarction after 24 h of ischemia-reperfusion. Compared with the model group, Xiaoxuming Decoction intervention significantly decreased the Longa score and reduced the formation of cerebral infarction area. The modeling led to the shrinking and vacuolar changes of nuclei in the brain tissue, disordered cell arrangement, and severe cortical ischemia-reperfusion injury, while the pathological damage in the Xiaoxuming Decoction group was mild. The modeling blurred the synaptic boundaries and broadened the synaptic gap, while such changes were recovered in the Xiaoxuming Decoction group. The modeling decreased the fluorescence intensity of NEUN and SYN, while the intensity in Xiaoxuming Decoction group was significantly higher than that in the model group. The expression of SYN and PSD95 in the ischemic penumbra was down-regulated in the model group, while such down-regulation can be alleviated by Xiaoxuming Decoction. In summary, Xiaoxuming Decoction may improve the synaptic plasticity of ischemic penumbra during acute cerebral ischemia-reperfusion by up-regulating the expression of SYN and PSD95.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Brain Ischemia/drug therapy*
;
Reperfusion Injury/metabolism*
;
Infarction, Middle Cerebral Artery
;
Neuronal Plasticity
;
Reperfusion
7.Establishment and applicability comparison of four models of acute liver ischemia/reperfusion injury in rat.
Jiaqi LUO ; Lili WANG ; Fudong CHEN ; Aixian ZHANG ; Han ZHANG ; Xiaomeng ZHANG ; Li CHEN
Chinese Critical Care Medicine 2023;35(6):604-609
OBJECTIVE:
To clarify the preparation methods of four rat models of liver ischemia/reperfusion injury (IRI) and to determine a liver IRI animal model that is consistent with clinical conditions, has stable pathological and physiological injury, and is easy to operate.
METHODS:
A total of 160 male Sprague-Dawley (SD) rats were randomly divided into four groups using an interval grouping method: 70% IRI (group A), 100% IRI (group B), 70% IRI with 30% hepatectomy (group C), and 100% IRI with 30% hepatectomy (group D), with 40 rats in each group. Each model was further divided into sham operation group (S group) and ischemia groups of 30, 60, and 90 minutes, with 10 rats in each group. After surgery, the survival status and awakening time of the rats were observed, and the liver lobectomy weight, bleeding volume, and hemostasis time of groups C and D were recorded. Blood samples were collected by cardiac puncture after 6 hours of reperfusion for determination the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), serum creatinine (SCr), and γ-glutamyl transpeptidase (γ-GT) in the serum to assess liver and kidney function. Hematoxylin-eosin (HE) staining and immunohistochemical staining of macrophages were performed to analyze the liver tissue structure damage from a pathological perspective.
RESULTS:
Rats in group A exhibited earlier awakening and acceptable mental status, while rats in the other groups showed delayed awakening and poor mental status. The hemostasis time in group D was approximately 1 second longer than that in group C. The mortality of rats subjected to 60 minutes of 70% hepatic ischemia was 0. Compared to the sham operation group, rats in each experimental group showed significant increases in serum levels of AST, ALT, ALP, BUN, SCr, and γ-GT, indicating impaired liver and kidney function in the rat models of liver IRI. In groups A, B, and C, the 90-minute ischemia subgroup exhibited more pronounced elevation in AST, ALT, ALP, BUN, SCr, and γ-GT levels compared to the 30-minute ischemia subgroup [AST (U/L): group A, 834.94±56.73 vs. 258.74±18.33; group B, 547.63±217.40 vs. 277.67±57.92; group C, 930.38±75.48 vs. 640.51±194.20; ALT (U/L): group A, 346.78±25.47 vs. 156.58±13.25; group B, 408.40±138.25 vs. 196.80±58.60; group C, 596.41±193.32 vs. 173.76±72.43; ALP (U/L): group A, 431.21±34.30 vs. 315.95±15.64; group B, 525.88±62.13 vs. 215.63±17.31; group C, 487.53±112.37 vs. 272.46±92.33; BUN (U/L): group A, 18.35±5.63 vs. 14.32±2.30; group B, 30.21±4.55 vs. 17.41±8.14; group C, 20.50±3.64 vs. 15.93±3.22; SCr (U/L): group A, 27.47±8.91 vs. 22.37±5.66; group B, 43.60±15.57 vs. 36.80±7.95; group C, 63.81±20.24 vs. 42.47±7.03; γ-GT (U/L): group A, 15.64±3.57 vs. 6.82±1.48; group B, 9.28±1.91 vs. 5.62±1.21; group C, 10.98±3.18 vs. 5.67±1.10; all P < 0.05]. The 100% IRI 90-minute group and 100% IRI 90-minute group with 30% hepatectomy exhibited more pronounced increases in the above-mentioned indicators compared to the corresponding 70% IRI control group, indicating increased liver and kidney damage in rats subjected to combined blood flow occlusion and hepatectomy. HE staining showed clear liver tissue structure with intact and orderly arranged cells in the sham operation group, while the experimental groups exhibited cell structure damage, including cell rupture or collapse, cell swelling, nuclear pyknosis, deep cytoplasm staining, cell shedding, and necrosis. The interstitium showed infiltration of inflammatory cells. Immunohistochemical staining revealed a higher number of macrophages in the experimental groups compared to the sham operation group.
CONCLUSIONS
Four models of liver IRI in rat were successfully established. As the duration and severity of hepatic ischemia increased, liver cell ischemia worsened, leading to increased hepatocellular necrosis and exhibiting characteristic features of liver IRI. These models can effectively simulate liver IRI following liver trauma, with the group subjected to 100% ischemia and 30% hepatectomy showing the most severe liver injury. The designed models are reasonable, easy to perform, and exhibit good reproducibility. They can be used for investigating the mechanisms, therapeutic efficacy, and diagnostic methods related to clinical liver IRI.
Rats
;
Male
;
Animals
;
Reproducibility of Results
;
Rats, Sprague-Dawley
;
Liver
;
Reperfusion Injury/drug therapy*
;
Ischemia
;
Disease Models, Animal
;
Necrosis
8.Dihydroartemisinin attenuates ischemia/reperfusion-induced renal tubular senescence by activating autophagy.
Huiling LIU ; Zhou HUANG ; Hong JIANG ; Ke SU ; Zilin SI ; Wenhui WU ; Hanyu WANG ; Dongxue LI ; Ninghua TAN ; Zhihao ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(9):682-693
Acute kidney injury (AKI) is an important factor for the occurrence and development of CKD. The protective effect of dihydroartemisinin on AKI and and reported mechanism have not been reported. In this study, we used two animal models including ischemia-reperfusion and UUO, as well as a high-glucose-stimulated HK-2 cell model, to evaluate the protective effect of dihydroartemisinin on premature senescence of renal tubular epithelial cells in vitro and in vivo. We demonstrated that dihydroartemisinin improved renal aging and renal injury by activating autophagy. In addition, we found that co-treatment with chloroquine, an autophagy inhibitor, abolished the anti-renal aging effect of dihydroartemisinin in vitro. These findings suggested that activation of autophagy/elimination of senescent cell might be a useful strategy to prevent AKI/UUO induced renal tubular senescence and fibrosis.
Animals
;
Kidney
;
Acute Kidney Injury/chemically induced*
;
Ischemia
;
Reperfusion Injury/drug therapy*
;
Autophagy
;
Reperfusion
9.Mechanism of astragaloside Ⅳ in regulating autophagy of PC12 cells under oxygen-glucose deprivation by medicating Akt/mTOR/HIF-1α pathway.
Jia-Xin LONG ; Meng-Zhi TIAN ; Xiao-Yi CHEN ; Yu XIONG ; Huang-He YU ; Yong-Zhen GONG ; Huang DING ; Ming-Xia XIE ; Ke DU
China Journal of Chinese Materia Medica 2023;48(19):5271-5277
This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.
Rats
;
Animals
;
PC12 Cells
;
Proto-Oncogene Proteins c-akt/genetics*
;
Glucose/therapeutic use*
;
Oxygen/metabolism*
;
Beclin-1/pharmacology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Apoptosis
;
Reperfusion Injury/drug therapy*
10.Effect and mechanism of Poria cocos polysaccharides on myocardial cell apoptosis in rats with myocardial ischemia-reperfusion injury by regulating Rho-ROCK signaling pathway.
Jun XIE ; Yuan-Yuan WANG ; Ju-Xin LI ; Feng-Min GAO
China Journal of Chinese Materia Medica 2023;48(23):6434-6441
This study aimed to investigate the effect and underlying mechanism of Poria cocos polysaccharides(PCP) on myocardial cell apoptosis in the rat model of myocardial ischemia-reperfusion injury(MI/RI). Male SPF-grade SD rats were randomly divided into a sham group(saline), a model group(saline), low-and high-dose PCP groups(100 and 200 mg·kg~(-1)), and a fasudil group(10 mg·kg~(-1)), with 16 rats in each group. Except for the sham group, the other four groups underwent left anterior descending coronary artery ligation for 30 min followed by reperfusion for 2 h to establish the MI/RI model. The myocardial infarct area was assessed by TTC staining. Histological changes were observed through HE staining. Myocardial cell apoptosis was evaluated using TUNEL staining. Serum lactate dehydrogenase(LDH), creatine kinase MB(CK-MB), interleukin-1β(IL-1β) and IL-18 levels, myocardial superoxide dismutase(SOD) activity and malondialdehyde(MDA) levels were detected by ELISA. Protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), cleaved caspase-3, Ras homolog gene A(RhoA), myosin phosphatase target subunit 1(MYPT-1), phosphorylated MYPT-1(p-MYPT-1), and Rho-associated coiled-coil forming kinase 1(ROCK 1) were measured by Western blot. Pathological staining of myocardial tissue revealed that in the model group, there was focal necrosis of myocardial tissue, myocardial cell swelling, unclear boundaries, and neutrophil infiltration. These pathological changes were alleviated in the low-and high-dose PCP groups and the fasudil group. Compared with the model group, the low-and high-dose PCP groups and the fasudil group showed significantly reduced myocardial infarct area and myocardial cell apoptosis rate. Compared with the sham group, the model group exhibited elevated serum LDH, CK-MB, IL-1β and IL-18 levels, increased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and decreased myocardial SOD levels and Bcl-2 protein expression. Compared with the model group, the PCP groups and the fasudil group showed lowered serum LDH, CK-MB, IL-1β and IL-18 levels, decreased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and increased myocardial SOD levels and Bcl-2 protein expression. PCP exhibited a certain preventive effect on myocardial tissue pathological damage and myocardial cell apoptosis in MI/RI rats, possibly related to the inhibition of the Rho-ROCK signaling pathway activation, thereby reducing oxidative stress and inflammatory responses.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/drug therapy*
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 3/metabolism*
;
Interleukin-18
;
Wolfiporia
;
Signal Transduction
;
Myocardial Infarction/drug therapy*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Creatine Kinase, MB Form
;
Apoptosis
;
Polysaccharides/pharmacology*
;
Superoxide Dismutase/metabolism*
;
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives*

Result Analysis
Print
Save
E-mail