1.Effects and mechanisms of 6-week intensive training on renal function in rats.
Yan-Long NIU ; Jian-Min CAO ; Hai-Tao ZHOU ; Jie LI
Chinese Journal of Applied Physiology 2018;34(1):65-68
OBJECTIVE:
To study the effect of 6-week intensive training on renal function in rats and the mechanism of exercise-induced proteinuria.
METHODS:
Thirty-six male SD rats, aged 6 weeks, were divided into two groups, including a control group(C,=12)and an overtraining group(M,=24). After the rats adapted to feeding for 4 d, group C did not carry out any exercise, and the M group did 6-week of increasing load swimming, 6 days a week, once a day. Started with the load of 1%weight at the beginning of the 4 week,and gradually increased (to 6% weight). Took a single urine from both groups 30 min after the end of the training. Blood was taken from the main ventral vein, and the bilateral kidneys were to be tested. The levels of tested urine protein, microalbumin and neutrophil gelatinase associated lipocalin(NGAL) was determined by using enzyme linked immunosorbent assaytest. The content of urine creatinine was tested with alkaline picric acid method,. The serum levels of colorimetric method to determine serum creatinine and urea nitrogen were determined by colorimetric method. The expression of Nephrin in renal tissue was detected by Western blot and the radioimmunoassay was used to test serum testosterone, corticosterone and renin-angiotensin system related index.
RESULTS:
Compared with group C, the serum testosterone/cortisone(T/C) of group M was decreased significantly (<0.01). The urine total protein(TP), microalbumin (mAlb), microalbumin/creatinine (mAlb/CRE), NGAL, blood urea nitrogen (BUN) and serum creatinine(SCr) were increased significantly (<0.01). The abnormality of glomerular structure was obvious, and the paller scores were higher. The protein expression of Nephrin was obviously down decreased (<0.01). The renin activity (Ra) and angiotension Ⅱ (Ang Ⅱ) in renal and circulating blood were decreased significantly (<0.01).
CONCLUSIONS
The effects of 6-week intensive training on renal function in rats and the mechanism of exercise-induced proteinuria may be that overtraining can induce the continuous excitation of Reninrenin activity in renal and circulating blood, down-regulated the expression of Nephrin, lead to abnormality of renal structure and function, and proteinuria.
Animals
;
Blood Urea Nitrogen
;
Corticosterone
;
blood
;
Creatinine
;
blood
;
Kidney
;
physiopathology
;
Male
;
Membrane Proteins
;
metabolism
;
Physical Conditioning, Animal
;
adverse effects
;
Proteinuria
;
Rats
;
Rats, Sprague-Dawley
;
Renin-Angiotensin System
;
Testosterone
;
blood
2.New advances in renal mechanisms of high fructose-induced salt-sensitive hypertension.
Acta Physiologica Sinica 2018;70(6):581-590
Fructose intake has increased dramatically over the past century and the upward trend has continued until recently. Increasing evidence suggests that the excessive intake of fructose induces salt-sensitive hypertension. While the underlying mechanism is complex, the kidney likely plays a major role. This review will highlight recent advances in the renal mechanisms of fructose-induced salt-sensitive hypertension, including (pro)renin receptor-dependent activation of intrarenal renin-angiotensin system, increased nephron Na transport activity via sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, increased renal uric acid production, decreased renal nitric oxide production, and increased renal reactive oxygen species production, and suggest actions based on these mechanisms that have therapeutic implications.
Blood Pressure
;
Fructose
;
adverse effects
;
Humans
;
Hypertension
;
chemically induced
;
physiopathology
;
Kidney
;
physiopathology
;
Nitric Oxide
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Renin-Angiotensin System
;
Sodium Chloride, Dietary
;
adverse effects
;
Sodium-Hydrogen Exchanger 3
;
metabolism
;
Uric Acid
;
metabolism
3.Vitamin D and its effects on cardiovascular diseases: a comprehensive review.
Nonanzit PÉREZ-HERNÁNDEZ ; Gad APTILON-DUQUE ; María Cristina NOSTROZA-HERNÁNDEZ ; Gilberto VARGAS-ALARCÓN ; José Manuel RODRÍGUEZ-PÉREZ ; Ruben BLACHMAN-BRAUN
The Korean Journal of Internal Medicine 2016;31(6):1018-1029
Vitamin D is a molecule that is actively involved in multiple metabolic pathways. It is mostly known for its implications related to calcium metabolism. It has also been determined that it actively participates in the cardiovascular system, influencing blood pressure, coronary artery disease and other vascular diseases, such as heart failure and atrial fibrillation. Furthermore, it has been established that this vitamin is extensively involved in the regulation of both the renin angiotensin aldosterone system and the immune system. In this review, we present the different vitamin D metabolic pathways associated with the cardiovascular pathophysiology, and we include studies in animal and human models, as well as some of the controversies found in the literature. This review also incorporates an overview of the implications in the molecular biology and public health fields.
Animals
;
Atrial Fibrillation
;
Blood Pressure
;
Calcium
;
Cardiovascular Diseases*
;
Cardiovascular System
;
Coronary Artery Disease
;
Heart Failure
;
Humans
;
Immune System
;
Metabolic Networks and Pathways
;
Metabolism
;
Molecular Biology
;
Public Health
;
Renin-Angiotensin System
;
Vascular Diseases
;
Vitamin D*
;
Vitamins*
4.Microarray Analysis in Spontaneously Hypertensive Rat Heart after Losartan Treatment.
Sang Won LEE ; Yikyung KIM ; Kwan Chang KIM ; Sejung SOHN ; Young Mi HONG
The Ewha Medical Journal 2016;39(2):45-50
OBJECTIVES: Spontaneously hypertensive rats (SHR) are frequently used as rat models of essential hypertension. The mechanism for the development of hypertension is complicated and it is unknown. The renin-angiotensin system (RAS) plays a key role in the control of blood pressure. Microarrays are a powerful tool for studying genetics. The purpose of this study was to investigate changes of gene expression in the heart tissues of SHR after losartan treatment to provide basic data that is useful in the early diagnosis of hypertension and gene treatment. METHODS: Rats were divided into three groups: the control (C) group; the hypertension (H) group (SHR), and the losartan (L) group; treated with losartan (10 mg/kg/day) in SHR. Rats were sacrificed at week 5 and microarray analysis was performed. RESULTS: 102 gene expressions including the genes associated with cell proliferation such as Raf1, Uchl1, Btla, Spock1 were increased. The other 139 gene expressions, including the genes related to the regulation of metabolism such as TFIID, Auf1, Bmp, Hub, Taf51 showed decreases in gene expression. A total of 31 genes were differentially expressed in the L group compared to the H group. Of these, 16 genes including the genes associated with macromolecule metabolism such as MGC105766, Ppp1r1a, Rpl3l showed increased expression. The other 15 genes including the genes associated with primary metabolism such as Mcpt4, Ngn3, Tdo, Ak2 Hyal2 showed decreased expressions. CONCLUSION: According to microarray analysis, there was significant gene expression change in SHR compared with normal rats as well as significant gene expression changes after losartan treatment in SHR.
Animals
;
Blood Pressure
;
Cell Proliferation
;
Early Diagnosis
;
Gene Expression
;
Genetics
;
Heart*
;
Hypertension
;
Losartan*
;
Metabolism
;
Microarray Analysis*
;
Models, Animal
;
Rats
;
Rats, Inbred SHR*
;
Renin-Angiotensin System
;
Transcription Factor TFIID
5.Protective effects of Sapindus saponins in spontaneously hypertensive rats.
Ming CHEN ; Zhi-Wu CHEN ; Zi-Jiang LONG ; Ju-Tao WANG ; Ya-Juan WANG ; Jin-Lin LIU
Chinese journal of integrative medicine 2015;21(1):36-42
OBJECTIVESTo investigate the protective effects of Sapindus saponins in spontaneously hypertensive rats, and the possible cellular and molecular mechanisms.
METHODSThirty-two 16-week-old spontaneously hypertensive rats were randomly divided into four groups (8 in each group): model group (placebo), positive control group (27 mg/kg of Captopril Tablets), Sapindus saponins groups (27 mg/kg and 108 mg/kg, respectively). Another 8 healthy Wistar-Kyoto strain (WKY) rats were used as the normal group. The animals were treated for 8 weeks. Blood pressure of rats was determined by non-invasive blood pressure meter (BP-6). Furthermore, the contents of angiotensin II (Ang II) in plasma and myocardial tissue were determined by enzyme-linked immunosorbent assay (ELISA), the gene expression of receptor angiotensin type 1 (AT1R) in aorta was determined by quantitative realtime polymerase chain reaction (qRT-PCR). The protein expression of transforming growth factor-β1 (TGF-β1) and AT1R in heart was determined by immunohistochemical staining. The protein expression of p-phosphorylation of p38 mitogen-activated protein kinase (p-p38MAPK) was determined by Western blotting. The contents of interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF) in serum were determined by radioimmunoassay. And the histopathological and morphological changes of aorta and heart tissue samples were assessed semi-quantitatively by hematoxylin-eosin (HE) or Masson staining.
RESULTSThirty minutes after single or continuous treatment, systolic blood pressure (SBP) was reduced significantly in Sapindus saponins groups. And the contents of AngII, IL-1, IL-6 and TNF-α in serum, the expression of AT1R mRNA, p-p38MAPK and TGF-β1 were significantly suppressed dose-dependently (P<0.05 or P<0.01). With the Sapindus saponins treatment, compared with those of the model group, the cardiac and aortic pathological changes were ameliorated significantly.
CONCLUSIONSOur findings suggest that Sapindus saponins might have protective effects in spontaneously hypertensive rats, the cellular and molecular mechanisms of which might be relevant to the regulation of inflammatory responses mediated by p-p38MAPK signal pathway based on activated Ang II and AT1R.
Angiotensin II ; metabolism ; Animals ; Aorta ; drug effects ; pathology ; physiopathology ; Blood Pressure ; drug effects ; Collagen ; metabolism ; Female ; Hypertension ; blood ; drug therapy ; enzymology ; physiopathology ; Interleukin-1 ; blood ; Interleukin-6 ; blood ; Male ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; therapeutic use ; Rats, Inbred SHR ; Receptor, Angiotensin, Type 1 ; metabolism ; Renin-Angiotensin System ; drug effects ; Sapindus ; chemistry ; Saponins ; pharmacology ; therapeutic use ; Transforming Growth Factor beta1 ; metabolism ; Tumor Necrosis Factor-alpha ; blood ; p38 Mitogen-Activated Protein Kinases ; metabolism
6.A Polymorphism of the Renin Gene rs6682082 Is Associated with Essential Hypertension Risk and Blood Pressure Levels in Korean Women.
Jongkeun PARK ; Kijun SONG ; Yangsoo JANG ; Sungjoo KIM YOON
Yonsei Medical Journal 2015;56(1):227-234
PURPOSE: The aim of the present study was to investigate associations between the renin gene (REN) and the risk of essential hypertension and blood pressure (BP) levels in Koreans. MATERIALS AND METHODS: To outline the functional role of a single nucleotide polymorphism in the transcription of the REN gene, we conducted a case-control study of 1975 individuals: 646 hypertension (HT) patients and 1329 ethnically and age-matched normotensive subjects. RESULTS: Logistic regression analysis indicated that the genotypes AA/AG were strongly associated with risk of HT (odds ratio, 1.493; 95% confidence interval, 1.069-2.086, p=0.018) in female subjects. The genotypes AA/AG also showed significant association with higher blood pressure levels, both systolic and diastolic, in postmenopausal HT women (p=0.003 and p=0.017, respectively). Analysis of the promoter containing rs6682082 revealed a 2.4+/-0.01-fold higher activity in the A variant promoter than the G variant promoter, suggesting that rs6682082 is itself a functional variant. CONCLUSION: We suggest that the A allele of rs6682082 is a positive genetic marker for predisposition to essential hypertension and high BP in Korean women and may be mediated through the transcriptional activation of REN.
Alleles
;
Asian Continental Ancestry Group/*genetics
;
Blood Pressure/*genetics
;
Case-Control Studies
;
Diastole/genetics
;
Female
;
Gene Frequency
;
*Genetic Association Studies
;
*Genetic Predisposition to Disease
;
Humans
;
Hypertension/*genetics/*physiopathology
;
Luciferases/metabolism
;
Middle Aged
;
Polymorphism, Single Nucleotide/*genetics
;
Promoter Regions, Genetic/genetics
;
Renin/*genetics
;
Republic of Korea
;
Risk Factors
;
Systole/genetics
;
Transfection
7.Effect of tanshinone II(A) on expression of different components in renin-angiotensin system of left ventricles of hypertensive rats.
China Journal of Chinese Materia Medica 2014;39(8):1468-1472
OBJECTIVETo investigate the effect of tanshinone II(A) on the expression of different components in the renin-angiotensin system of left ventricles of renal hypertensive rats.
METHODThe renal hypertension model was established in rats by the two-kidney-one-clip (2K1C) method. In the experiment, all of the rats were randomly divided into four groups (n = 15 per group) before the operation: the sham-operated (Sham) group, the hypertensive model (Model) group, the low-dose tanshinone II(A) group and the high-dose tanshinone II(A) group. At 5 week after the renal artery narrowing, the third and fourth groups were administered with 35 mg kg(-1) x d(-1) and 70 mg x kg(-1) x d(-1) of tanshinone II(A), respectively. The blood pressure in rats was determined by the standard tail-cuff method in each week after the operation. After the drug treatment for 8 weeks, all the rats were put to death, and their left ventricles were separated to determine the ratio of left ventricle weight to body weight (LVW/BW), the myocardial collagen content, and the expressions of different components in myocardial RAS, including angiotensin converting enzyme (ACE), angiotensin converting enzyme 2 (ACE2), angiotensin 1-type receptor (AT1R), Mas receptor mRNA expression and angiotensin II (Ang II) and angiotensin (1-7) [Ang (1-7)] content.
RESULTCompared with the sham group, the hypertensive model group exhibited a markable increase in the content of Ang II and Ang (1-7) and the mRNA expressions of ACE, ACE2, AT1R and Mas (P < 0.01). However, the treatment with tanshinone II(A) showed the does dependence, inhibited left ventricle hypertrophy, decreased myocardial Ang II content and the mRNA expression of ACE and AT, R in renal hypertensive rats (P < 0. 01) , further increased the myocardial Ang (1-7) content and the mRNA expression of ACE2 and Mas (P < 0.01) , but without any change in the blood pressure of hypertensive rats.
CONCLUSIONThe treatment with tanshinone II(A) could inhibit left ventricle hypertrophy of renal hypertensive rats. Its mechanism may be partially related to the expression of different components in the renin-angiotensin system for regulating myocardial tissues.
Angiotensin I ; genetics ; metabolism ; Angiotensin II ; genetics ; metabolism ; Animals ; Blood Pressure ; drug effects ; Diterpenes, Abietane ; administration & dosage ; Heart Ventricles ; drug effects ; metabolism ; Humans ; Hypertension ; drug therapy ; genetics ; metabolism ; physiopathology ; Male ; Peptide Fragments ; genetics ; metabolism ; Peptidyl-Dipeptidase A ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Renin ; genetics ; metabolism ; Renin-Angiotensin System ; drug effects
8.Discriminatory analyses of climacteric syndrome patients of shen deficiency syndrome.
Qi LI ; Pei-yun ZHOU ; Hao LI ; Jing-hong XIE ; Sai-qin XUE ; Xiao-hong SHANG
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(8):1064-1068
OBJECTIVETo find out a set of practical,objective, and quantitative laboratory indices of climacteric syndrome (CS) patients of Shen deficiency syndrome (SDS), thus studying the essence of SDS from the perspective of laboratory medicine.
METHODSRecruited were 40 CS patients of SDS (or of SDS as main syndrome) as the SDS group, while another 40 healthy subjects were recruited as the control group. Their serum samples were collected. Serum levels of total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3), free thyroxine (FT4), thyroid stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (TESTO), estradiol (E2), prolactin (PRL), progesterone (PROG), cortisol (CORT), immunoglobulin M (IgM), immunoglobulin G (lgG), Complement 3 (C3), complement hemolysis 50% (CH50), angiotensin converting enzyme (ACE), aldosterone (ALD), serum alkaline phosphatase (ALP), and bone Gla-protein (BGP) were measured by automatic electrochemical luminescence assay analyzer, automatic chemiluminescence assay analyzer, automatic biochemistry analyzer, and automatic enzyme-linked immunosorbent assay (ELISA) analyzer. The correlation between syndrome types and laboratory indices were judged by gradual discriminant analyses.
RESULTS(1) Compared with the control group,serum levels of CORT, TESTO, E2, TT3, FT3, FT4, TSH, C3, CH50, ALP, and BGP significantly decreased in the SDS group (P < 0.01, P < 0. 05), while FSH, LH, and ACE significantly increased (P < 0.05). (2) The index with stronger capacity for diagnosing CS patients of SDS was ranked from high to low as CH50, PROG, TSH, TESTO, BGP, CORT, and C3, with their contribution rate of the discriminant function being 95.9%. (3) Discriminant analysis equation of CS patients of SDS was Y = -25.904 - 0.468CH50 + 0.002PROG + 0.182TSH + 9.690TESTO + 1.015BGP + 0.016CORT + 33.581 C3.
CONCLUSIONS(1) CS patients of SDS were closely correlated with thyroid hypothalamus-pituitary-adrenal axis, hypothalamus-pituitary-adrenal axis, renin-renin-angiotensin-aldosterone system,the immune function, and bone formation, and etc. (2) CH50 might be of a high sensibility marker for diagnosing CS patients of SDS. (3) Discriminant analysis equations of laboratory medicine index may be used in preliminary diagnosis and auxiliary certificate of CS patients of SDS.
Case-Control Studies ; Climacteric ; metabolism ; Discriminant Analysis ; Estradiol ; blood ; Female ; Follicle Stimulating Hormone ; blood ; Humans ; Hydrocortisone ; blood ; Luteinizing Hormone ; blood ; Medicine, Chinese Traditional ; methods ; Middle Aged ; Pituitary-Adrenal System ; Progesterone ; metabolism ; Prolactin ; blood ; Renin-Angiotensin System ; Testosterone ; blood ; Thyrotropin ; blood ; Thyroxine ; blood ; Triiodothyronine ; blood
9.Adenosine receptors agonists mitigated PAH of rats induced by chronic hypoxia through reduction of renin activity/angiotensin II levels and increase of inducible nitric oxide synthase-nitric oxide levels.
Jian-xin TAN ; Xiu-lan HUANG ; Bo WANG ; Xing FANG ; Di-nan HUANG
Chinese Journal of Pediatrics 2012;50(10):782-787
OBJECTIVERecent studies showed that adenosine played important roles in vasodilation. This study aimed to investigate the effects of adenosine, its A1 and A2b receptor agonists on pulmonary artery hypertension (PAH) induced by chronic hypoxia in rats by continuously subcutaneous administration with an osmotic pump for 14 days, and to see if rennin angiotensin system and inducible nitric oxygen synthase (iNOS)/nitric oxide (NO) mediate the effects.
METHODFifty-six male SD rats were randomly assigned to seven groups. Each group included eight rats. They were normoxic group, hypoxic group, adenosine-treated group [adenosine was administered at a dose of 150 µg(kg·min) under the hypoxic condition], adenosine A1 receptor agonist CPA-treated group [CPA was administered at a dose of 20 µg/(kg·min) under the hypoxic condition], CPA plus selective adenosine A1 antagonist DPCPX-treated group [CPA and DPCPX were administered simultaneously under the hypoxic condition, the dose of CPA was the same as the above, and the dose of DPCPX was 25 µg/(kg·min)], adenosine A2b receptor agonist NECA-treated group [NECA was administered at a dose of 30 µg/(kg·min) under the hypoxic condition], NECA plus selective adenosine A2b receptor antagonist MRS-treated group[ NECA and MRS1754 were administered simultaneously under the hypoxic condition, the dose of NECA was the same as the above, and the dose of MRS1754 was 50 µg/(kg·min)]. Osmotic pumps containing adenosine or selective adenosine A1 receptor agonist (CPA), or nonselective but potent adenosine A2b receptor agonist (NECA) were placed subcutaneously 7 days after hypoxia and continuously administered the agents for 14 days.Mean pulmonary artery pressure (mPAP) was detected after administration of the agents. Then blood samples were taken from heart for measurement of renin activity, angiotensin II (AngII) and endothelin-1 (ET-1) concentration by radioimmunoassay, NO by measuring nitrate. Small pulmonary arteries were prepared for immunoreactivity staining of proliferating cell nuclear antigen (PCNA) and iNOS.
RESULT(1) Chronic hypoxia induced PAH [mPAP: (31.38 ± 3.42) mm Hg]. Adenosine or CPA or NECA administered for 14 days by subcutaneous route attenuated the mPAP [(21.17 ± 3.56) mm Hg, (22.88 ± 2.95) mm Hg, (19.81 ± 2.39) mm Hg, respectively], which showed significant difference when compared with hypoxia group (P < 0.05 respectively). (2) Plasma rennin activity and AngII level in hypoxia group [(2.51 ± 0.25) ng/(ml·h), (83.01 ± 9.38) pg/ml] were significantly higher than that in normoxic group (P < 0.05, respectively).(3) Adenosine treatment decreased the rennin activity and AngII level when compared with hypoxic group(P < 0.05, respectively);CPA and NECA attenuated respectively the rennin activity and AngII level of rats induced by chronic hypoxia (P < 0.05, respectively). (4) Adenosine administration for 14 days attenuated the wall thickness induced by chronic hypoxia (P < 0.05). CPA showed no effect on wall thickness, but NECA significantly attenuated the wall thickness (P < 0.05). (5) The number of iNOS staining positive cells in small pulmonary artery was higher in hypoxia group than in that in normoxic rats (23.75 ± 7.91 vs. 8.00 ± 2.20, P < 0.05). Adenosine or CPA, or NECA administration increased respectively the iNOS expression in rats treated with chronic hypoxia. Chronic hypoxia caused significant decrease of nitric oxide level. Adenosine treatment increased the nitric oxide level in rats treated with chronic hypoxia. CPA and NECA also increased respectively the nitric oxide level in rats treated with chronic hypoxia. Chronic hypoxia caused significant increase of ET-1 level. The ET-1 level in rats treated with adenosine, CPA or NCEA respectively were lower than that in chronic hypoxia rats (P < 0.05). (6) Adenosine treatment partially attenuated the number of PCNA-positively stained cells. NECA treatment also attenuated the PCNA expression, but CPA showed no effect.
CONCLUSIONAdenosine and its agonists CPA, NECA administered continually by subcutaneous route attenuate mPAP of rats induced by chronic hypoxia. CPA attenuates mPAP through reduction of RA/AngII activity and balance of NO/ET-1 level. NECA attenuates mPAP by inhibiting PCNA expression and proliferation of mooth muscle of pulmonary artery.
Adenosine ; administration & dosage ; pharmacology ; Angiotensin II ; blood ; Animals ; Disease Models, Animal ; Endothelin-1 ; metabolism ; Hypertension, Pulmonary ; drug therapy ; etiology ; metabolism ; Hypoxia ; complications ; Male ; Nitric Oxide ; blood ; Nitric Oxide Synthase Type II ; metabolism ; Proliferating Cell Nuclear Antigen ; metabolism ; Pulmonary Artery ; drug effects ; physiopathology ; Purinergic P1 Receptor Agonists ; administration & dosage ; pharmacology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Renin ; blood
10.Pharmacodynamic study of racemic TJ0711 on renal hypertensive rats after long-term administration.
Ren-Jie LI ; Jun QIU ; Xue-nong ZHANG ; Jing CHEN ; Gao LI
Acta Pharmaceutica Sinica 2012;47(8):1001-1005
The study is to observe the effect of racemic TJ0711 on blood pressure and heart rate as well as protection of cardiovascular system of renal hypertensive rats after long-term administration. The renal hypertensive models were established by the two-kidney, one-clip (2K1C) method in Wistar rats. Four weeks later, assigned the rats whose SBP had increased at least 4 kPa randomly into 5 groups: racemic TJ0711 10, 20 and 40 mg x kg(-1) groups, carvedilol control group, model group and sham group (n=10), ig administration once daily. The changes of BP (blood press) and HR (heart rate) before and after administration were measured by tail-cuff method weekly. Plasma samples of all animals were taken in 6-8 weeks, and plasma MDA as well as renin, angiotensin II (Ang II) and endothelin-1 (ET-1) levels were measured. Left ventricle was cut off after 9 weeks, and left ventricular weight index (LVWI) and hydroxyproline were measured. The significant decrease of the BP of TJ0711 40 mg x kg(-1) group was observed after TJ0711 ig administration for 4 weeks, and this effect remained till the end of the study. In 8th week, the systolic blood pressure values were: TJ0711 40 mg x kg(-1) group 18.93 +/- 1.82 kPa (vs 21.30 +/- 2.30 kPa, P < 0.05); 20 mg x kg(-1) group 20.68 +/- 3.29 kPa (vs 22.19 +/- 2.88 kPa). The plasma MDA level of all treated groups was significantly lower than that of model group, so were the plasma renin, Ang II and ET-1 levels (P < 0.05). LVWI and hydroxyproline content of myocardial tissue decreased to some extent, but was not significant as compared with that of model group. The study showed that TJ0711 repeated dosing could reduce BP level beginning from drug administration; besides block adrenal alpha and beta receptors to play an antihypertensive role. The sustained antihypertensive effect also related to reduce plasma vasoconstrictor substances and oxidation product MDA. These effects benefited cardiovascular protection.
Angiotensin II
;
blood
;
Animals
;
Antihypertensive Agents
;
administration & dosage
;
pharmacology
;
Blood Pressure
;
drug effects
;
Endothelin-1
;
blood
;
Female
;
Heart Rate
;
drug effects
;
Heart Ventricles
;
metabolism
;
pathology
;
Hydroxyproline
;
metabolism
;
Hypertension, Renal
;
blood
;
physiopathology
;
Longitudinal Studies
;
Male
;
Malondialdehyde
;
blood
;
Organ Size
;
drug effects
;
Phenoxypropanolamines
;
administration & dosage
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Renin
;
blood

Result Analysis
Print
Save
E-mail