1.Investigation on "Fengshi (GB 31) for treating wind disorders".
Chinese Acupuncture & Moxibustion 2023;43(7):829-834
From the perspective of academic history, the paper reviews systematically the background and evolution of the understanding of "Fengshi (GB 31) for treating wind disorders". In the ancient literature, there are no direct relevant statement for the indication of Fengshi (GB 31) associated with "wind", and the consensus on "Fengshi for treating wind disorders" has not been made yet. Under the influence of acupoint theory in recent era and the syndrome differentiation for acupuncture treatment in modern time, this statement becomes a conventional understanding and acceptable gradually. Meanwhile, the understanding for Fengshi (GB 31) treating wind disorders tends to be generalized. Practically, Fengshi (GB 31) is applicable for the various disorders in the local and adjacent areas. It is necessary for modern acupuncture researchers to systematically collate, investigate and identify the knowledge content with a sense of familiarity so that the contemporary inheritance, development and application of traditional theoretical knowledge of acupuncture can be enhanced.
Wind
;
Acupuncture Points
;
Acupuncture Therapy
;
Consensus
;
Knowledge
2.Advances in using adaptive laboratory evolution technology for engineering of photosynthetic cyanobacteria.
Jiawei GAO ; Xiaofei ZHU ; Tao SUN ; Lei CHEN ; Weiwen ZHANG
Chinese Journal of Biotechnology 2023;39(8):3075-3094
Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis, which have potential to serve as "autotrophic cell factories". However, the synthesis of biofuels and chemicals using cyanobacteria as chassis are suffered from poor stress tolerance and low yield, resulting in low economic feasibility for industrial production. Thus, it's urgent to construct new cyanobacterial chassis by means of synthetic biology. In recent years, adaptive laboratory evolution (ALE) has made great achievements in chassis engineering, including optimizing growth rate, increasing tolerance, enhancing substrate utilization and increasing product yield. ALE has also made some progress in improving the tolerance of cyanobacteria to high light intensity, heavy metal ions, high concentrations of salt and organic solvents. However, the engineering efficiency of ALE strategy in cyanobacteria is generally low, and the molecular mechanisms underpinning the tolerance to various stresses have not been fully elucidated. To this end, this review summarizes the ALE-associated technical strategies and their applications in cyanobacteria chassis engineering, following by discussing how to construct larger ALE mutation library, increase mutation frequency of strains and shorten evolution time. Moreover, exploration of the construction principles and strategies for constructing multi-stress tolerant cyanobacteria, and efficient analysis the mutant libraries of evolved strains as well as construction of strains with high yield and strong robustness are discussed, with the aim to facilitate the engineering of cyanobacteria chassis and the application of engineered cyanobacteria in the future.
Technology
;
Photosynthesis/genetics*
;
Cyanobacteria/genetics*
;
Light
;
Biofuels
3.Influence of wind, cold and dampness on clinical manifestation of knee osteoarthritis patients based on the stratifications of traditional Chinese medicine constitution.
Ze-Cheng TAN ; Ding JIANG ; Qin-Guang XU ; Lin WANG ; Xue-Zong WANG ; Bo CHEN ; Jian PANG ; Hong-Sheng ZHAN ; Yue-Long CAO
China Journal of Orthopaedics and Traumatology 2023;36(12):1130-1135
OBJECTIVE:
To explore influence of external factors of wind, cold and dampness on clinical symptoms in knee osteoarthritis (KOA) patients with different constitutions of traditional Chinese medicine.
METHODS:
A cross-sectional stratified study was performed to select 108 patients with GradeⅡKOA in Kellgren & Lawrence (K-L) classification, including 22 males and 86 females, aged from 47 to 75 years old with an average of (60.7±6.0) years old;body mass index(BMI) ranged from 17.87 to 31.22 kg·m-2 with an average of (23.80±2.86) kg·m-2. According to Classification and Judgment of TCM Physique (ZYYXH/T157-2009), the types of TCM physique were determined and divided into 4 layers according to the deficiency and actual physique. Among them, there were 24 patients without biased physique, 12 males and 12 females, aged from 51 to 73 years old with an average of(62.8±6.0) years old, BMI ranged from 17.87 to 31.14 kg·m-2 with an average of (24.32±3.25) kg·m-2;there were 46 patients with virtual bias constitution, including 7 males and 39 females, aged from 47 to 70 years old with an average of (60.0±5.8) years old, BMI ranged from 19.38 to 31.22 kg·m-2 with an average of(23.42±2.97) kg·m-2;There were 26 patients with solid bias constitution, including 2 males and 24 females, aged from 48 to 75 years old with an average of (60.4±5.8) years old, BMI ranged from 21.16 to 30.76 kg·m-2 with an average of (24.15±2.33) kg·m-2;there were 9 patients with special constitution, 1 male and 8 female, aged from 53 to 75 years old with an average of (59.8±7.5) years old, BMI ranged from 19.26 to 26.67 kg·m-2 with an average of (23.79±2.49) kg·m-2. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was used to evaluate severity of clinical symptoms. The wind-cold-dampness external factor score was calculated through the questionnaire of wind-cold-dampness syndrome scale to evaluate degree of influence of wind-cold-dampness external factor. Pearson correlation analysis and partial correlation analysis were used to calculate the correlation coefficient between severity of external factors affecting wind, cold and dampness and severity of clinical symptoms in patients with different TCM constitution stratification.
RESULTS:
There was no statistical significance between total score of wind-cold-dampness and WOMAC score in patients with no biased constitution and special condition. Total wind-cold-dampness score of patients with virtual biased constitution was positively correlated with WOMAC stiffness score (r=0.327, P=0.032), and total wind-cold-dampness score of patients with solid biased constitution was positively correlated with WOMAC pain score (r=0.561, P=0.005) and WOMAC overall score (r=0.446, P=0.033). After further adjusting for the interaction of external factors of wind-cold-dampness, there was no statistical significance between wind-cold-dampness scores and WOMAC scores in patients with solid biased constitution. The score of dampness and pathogenic factors was positively correlated with WOMAC stiffness score (r=0.414, P=0.007).
CONCLUSION
The external factors of wind-cold dampness have different effects on the clinical symptoms of KOA patients with different TCM constitutions. Compared with other constitutions, the rigid symptoms of patients with asthenic biased constitutions are more susceptible to dampness pathogenic factors.
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Cross-Sectional Studies
;
Medicine, Chinese Traditional
;
Osteoarthritis, Knee
;
Syndrome
;
Wind
;
Cold Temperature
4.Evaluation of thermal environment and human thermal comfort in 8 types of public places from 2019 to 2021.
Jing Ying ZHU ; Xi ZHANG ; Chun Hua HUANG ; Lin WANG ; Rong CHEN ; Xin Liang DING
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(3):189-197
Objective: To evaluate the thermal environment of different types of public places and the thermal comfort of employees, so as to provide scientific basis for the establishment of microclimate standards and health supervision requirements. Methods: From June 2019 to December 2021, 50 public places (178 times) of 8 categories in Wuxi were selected, including hotels, swimming pools (gymnasiums), bathing places, shopping malls (supermarkets), barber shops, beauty shops, waiting rooms (bus station) and gyms. In summer and winter, microclimate indicators such as temperature and wind speed were measured in all kinds of places, combined with the work attire and physical activity of employees in the places. Fanger thermal comfort equation and center for the built environment (CBE) thermal comfort calculation tool were used to evaluate the predicted mean vote (PMV), predicted percent dissatisfied (PPD) and standard effective temperature (SET) according to the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 55-2020. The modification effects of seasonal and temperature control conditions on thermal comfort were analyzed. The consistency of GB 37488-2019 "Hygienic Indicators and Limits in Public Places" and ASHRAE 55-2020 evaluation results on thermal environment was compared. Results: The thermal sensation of hotel, barber shop staff and the gym front-desk staff were moderate, while the thermal sensation of swimming place lifeguard, bathing place cleaning staff and gym trainer were slightly warm in summer and winter. Waiting room (bus station) cleaning and working staff, shopping mall staff felt slightly warm in summer and moderate in winter. Service staff in bathing places felt slightly warm in winter, while staff in beauty salons felt slightly cool in winter. The thermal comfort compliance of hotel cleaning staff and shopping mall staff in summer was lower than that in winter (χ(2)=7.01, 7.22, P=0.008, 0.007). The thermal comfort compliance of shopping mall staff in the condition of air conditioning off was higher than that in the condition of air conditioning on (χ(2)=7.01, P=0.008). The SET values of front-desk staff in hotels with different health supervision levels were significantly different (F=3.30, P=0.024). The PPD value and SET value of the front-desk staff, and the PPD value of cleaning staff of hotels above three stars were lower than those of hotels below three stars (P<0.05). The thermal comfort compliance of front-desk staff and cleaning staff in hotels above three stars was higher than that in hotels below three stars (χ(2)=8.33, 8.09, P=0.016, 0.018). The consistency of the two criteria was highest among waiting room (bus station) staff (100.0%, 1/1) and lowest among gym front-desk staff (0%, 0/2) and waiting room (bus station) cleaning staff (0%, 0/1) . Conclusion: There are different degrees of thermal discomfort in different seasons, under the condition of air conditioning and health supervision, and the microclimate indicators can not fully reflect the thermal comfort of human body. The health supervision of microclimate should be strengthened, the applicability of health standard limit value should be evaluated in many aspects, and the thermal comfort of occupational group should be improved.
Humans
;
Temperature
;
Cold Temperature
;
Air Conditioning
;
Wind
;
Seasons
5.Advances in the co-culture of microalgae with other microorganisms and applications.
Chang LI ; Wenxiang PING ; Jingping GE ; Yimeng LIN
Chinese Journal of Biotechnology 2022;38(2):518-530
Intense utilization and mining of fossil fuels for energy production have resulted in environmental pollution and climate change. Compared to fossil fuels, microalgae is considered as a promising candidate for biodiesel production due to its fast growth rate, high lipid content and no occupying arable land. However, monocultural microalgae bear high cost of harvesting, and are prone to contamination, making them incompetent compared with traditional renewable energy sources. Co-culture system induces self-flocculation, which may reduce the cost of microalgae harvesting and the possibility of contamination. In addition, the productivity of lipid and high-value by-products are higher in co-culture system. Therefore, co-culture system represents an economic, energy saving, and efficient technology. This review aims to highlight the advances in the co-culture system, including the mechanisms of interactions between microalgae and other microorganisms, the factors affecting the lipid production of co-culture, and the potential applications of co-culture system. Finally, the prospects and challenges to algal co-culture systems were also discussed.
Biofuels
;
Biomass
;
Coculture Techniques
;
Flocculation
;
Microalgae
6.Lipid production by oleaginous microorganisms using food wastes: a review.
Yong ZHANG ; Yangbin HE ; Wen YANG ; Faqi TAN ; Weiwei LI ; Qiuzhen WANG
Chinese Journal of Biotechnology 2022;38(2):565-577
Food wastes are rich in nutrients and can be used for producing useful chemicals through biotransformation. Some oleaginous microorganisms can use food wastes to produce lipids and high value-added metabolites such as polyunsaturated fatty acids, squalene, and carotenoids. This not only reduces the production cost, but also improves the economic value of the products, thus has large potential for commercial production. This review summarized the advances in food waste treatment, with a focus on the lipid production by oleaginous microorganisms using food wastes. Moreover, challenges and future directions were prospected with the aim to provide a useful reference for related researchers.
Biofuels
;
Biotransformation
;
Food
;
Lipids
;
Refuse Disposal
7.Biofuel production potential of indigenous isolates of Scenedesmus sp. from lake water in Pakistan
Muhammad Imran Najeeb ; Mansur-ud-Din Ahmad ; Aftab Ahmad Anjum ; Azhar Maqbool ; Muhammad Asad Ali ; Muhammad Nawaz ; Tehreem Ali ; Rabia Manzoor
Malaysian Journal of Microbiology 2022;18(4):380-388
Aims:
This paper presents the report on biodiesel and biogas production at a laboratory scale from Scenedesmus strain.
Methodology and results:
Previously isolated and identified Scenedesmus were grown in 10 Liter flask using BG-11 media at 16 h light and 8 h dark cycle. Oven-dried biomass (20 g) from 16-day-old culture of Scenedesmus was finely grounded and subjected to lipids extraction by chloroform-methanol-NaCl mixture. Microalgal lipids (6 mL) were subjected to transesterification by using NaOH leading to the production of 5 mL biodiesel and 4 mL of glycerin. Biodiesel was rich in methyl esters of linoleic acid, phosphorothioc acid and dodecanoic acid, as shown by gas chromatography-mass spectrometry (GC-MS) analysis. Oven-dried microalgae (2 g) without lipid extraction and leftover biomass (2 g) after lipid extraction were subject to biogas production through anaerobic digestion. Biogas (34, 27 and 19 mL) were recorded respectively in oven-dried whole biomass; lipid extracted biomass and control over a period of 15 days of anaerobic digestion.
Conclusion, significance and impact of study
It was concluded that water bodies are rich in diverse algae, especially Scenedesmus sp., and this algae can be cultured to produce biodiesel and biogas. But the lipid accumulation potential of microalgae requires special treatment and lipid extraction methods are not up to the mark, which is a major bottleneck in biofuel production from microalgae.
Biofuels
;
Scenedesmus--isolation &
;
purification
8.Bio-valorization of palm oil mill effluent waste for the potential production of renewable biomass fuel pellets
Nurul Alia Syufina Abu Bakar ; Siti Baidurah
Malaysian Journal of Microbiology 2022;18(4):408-423
Aims:
The primary aim of this study was to utilize abundant palm oil mill effluent (POME) waste and turn it into a value-added product of biomass fuel with high calorific energy value (CEV) via fermentation and drying process, then simultaneously reduce abundant liquid waste.
Methodology and results:
POME is available abundantly in Malaysia and only a small portion of it is utilized to produce other value-added products. In this study, fermentation of POME in the presence of bacteria (Lysinibacillus sp.) and fungus (Aspergillus flavus) separately at 37 °C, 180 rpm for 5 days, followed by overnight oven-drying at 85 °C was conducted. Four fermentation medium conditions were performed, viz.: (1) autoclaved POME, (2) autoclaved POME with the addition of Lysinibacillus sp., (3) autoclaved POME with the addition of A. flavus and (4) POME as it is (non-sterile).
Conclusion, significance and impact of study
Among all conditions, fermentation utilizing autoclaved POME in the presence of A. flavus evinced the highest CEV of 25.18 MJ/kg. The fermentation in the presence of Lysinibacillus sp. strain revealed high COD and BOD removal efficiency of 59.20% and 320.44 mg/L as well as the highest reduction of oils and grease among other groups with the value of 15.84%. Future research directions are proposed for the elucidation of co-fermentation in the presence of both Lysinibacillus sp. and A. flavus.
Palm Oil
;
Biomass
;
Biofuels
;
Waste Disposal, Fluid
9.Progress in detoxification of inhibitors generated during lignocellulose pretreatment.
Li YANG ; Liping TAN ; Tongjun LIU
Chinese Journal of Biotechnology 2021;37(1):15-29
Lignocellulose can be hydrolyzed by cellulase into fermentable sugars to produce hydrogen, ethanol, butanol and other biofuels with added value. Pretreatment is a critical step in biomass conversion, but also generates inhibitors with negative impacts on subsequent enzymatic hydrolysis and fermentation. Hence, pretreatment and detoxification methods are the basis of efficient biomass conversion. Commonly used pretreatment methods of lignocellulose are chemical and physic-chemical processes. Here, we introduce different inhibitors and their inhibitory mechanisms, and summarize various detoxification methods. Moreover, we propose research directions for detoxification of inhibitors generated during lignocellulose pretreatment.
Biofuels
;
Biomass
;
Fermentation
;
Hydrolysis
;
Lignin/metabolism*
10.Exploration of yeast biodiversity and development of industrial applications.
Tingting FAN ; Muyao WANG ; Jun LI ; Fenglou WANG ; Zhang ZHANG ; Xin-Qing ZHAO
Chinese Journal of Biotechnology 2021;37(3):806-815
Yeast are comprised of diverse single-cell fungal species including budding yeast Saccharomyces cerevisiae and various nonconventional yeasts. Budding yeast is well known as an important industrial microorganism, which has been widely applied in various fields, such as biopharmaceutical and health industry, food, light industry and biofuels production. In the recent years, various yeast strains from different ecological environments have been isolated and characterized. Novel species have been continuously identified, and strains with diverse physiological characteristics such as stress resistance and production of bioactive compounds were selected, which proved abundant biodiversity of natural yeast resources. Genome mining of yeast strains, as well as multi-omics analyses (transcriptome, proteome and metabolome, etc.) can reveal diverse genetic diversity for strain engineering. The genetic resources including genes encoding various enzymes and regulatory proteins, promoters, and other elements, can be employed for development of robust strains. In addition to exploration of yeast natural diversity, phenotypes that are more suitable for industrial applications can be obtained by generation of a variety of genetic diversity through mutagenesis, laboratory adaptation, metabolic engineering, and synthetic biology design. The optimized genetic elements can be used to efficiently improve strain performance. Exploration of yeast biodiversity and genetic diversity can be employed to build efficient cell factories and produce biological enzymes, vaccines, various natural products as well as other valuable products. In this review, progress on yeast diversity is summarized, and the future prospects on efficient development and utilization of yeast biodiversity are proposed. The methods and schemes described in this review also provide a reference for exploration of diversity of other industrial microorganisms and development of efficient strains.
Biodiversity
;
Biofuels
;
Industrial Microbiology
;
Metabolic Engineering
;
Saccharomyces cerevisiae/genetics*
;
Synthetic Biology


Result Analysis
Print
Save
E-mail