1.Investigation and influencing factors of enteral nutrition support in elderly patients with ischemic stroke
Hong RAN ; Yan REN ; Xiaolu HUANG ; Xiaodan HAO
Journal of Public Health and Preventive Medicine 2025;36(1):123-126
Objective To explore enteral nutrition support and analyze its influencing factors in elderly patients with ischemic stroke. Methods A total of 328 patients with ischemic stroke in General Hospital of Western Theater Command were enrolled for nutritional screening between July 2020 and February 2024. Corresponding nutritional support plans were selected to investigate the compliance of patients with enteral nutrition support. Patients were divided into a standard group (n=140) and a non-standard group (n=97) based on whether their calorie intake met the standard. The effects of different clinical characteristics on enteral nutrition support were explored, and logistic analysis was used to analyze the influencing factors of non-standard enteral nutrition support. Results In the 328 patients with ischemic stroke, proportions of total parenteral nutrition support, total enteral nutrition support, and parenteral/enteral nutrition support were 25.30%, 27.74% and 46.95%, respectively. The proportions of vomiting or regurgitation, gastric residual volume >100 mL, mechanical ventilation and use of antibiotics >2 in the non-standard group were higher than those in the standard group (P<0.05). Logistic analysis showed that the above clinical characteristics were risk factors influencing patients with enteral nutrition support and parenteral/enteral nutrition support. Conclusion Vomiting or regurgitation , gastric residual volume, mechanical ventilation, and amount of antibiotics used are important influencing factors of enteral nutrition support in patients. Clinicians should pay attention to the above clinical characteristics.
2.Analysis of the current status and influencing factors of cognitive function and sleep quality of elderly people in Shanghai community
Yanli ZHANG ; Meng WANG ; Xuechun WANG ; Shanshan HUANG ; Jiaoqi REN ; Houguang ZHOU
Chinese Journal of Clinical Medicine 2025;32(1):58-64
Objective To analyze the cognitive function and sleep quality of the elderly in Shanghai community, and explore the related influencing factors. Methods A stratified cluster random sampling method was used to select 8 community health centers in Shanghai for a questionnaire survey, including 3 677 elderly individuals who completed the “Comprehensive Health Status Survey of Elderly Residents in Shanghai” from September 2023 to November 2023. Basic information of the elderly was collected, including age, gender, education level, smoking, drinking, mahjong playing behavior, and exercise habits. The Pittsburgh sleep quality index (PSQI) was used to assess the sleep quality of the elderly, subjective cognitive decline (SCD) self-assessment questionnaire and Mini-Mental State Examination (MMSE) were used to evaluate cognitive function, while the Hamilton Anxiety Scale (HAMA) and patient health questionnaire-9 (PHQ-9) were used to assess anxiety and depression levels, and the mini nutritional assessment (MNA) was used to evaluate nutritional status. According to the MMSE scores, the elderly were divided into three groups: no cognitive impairment (MMSE ≥ 27), mild cognitive impairment (MMSE 21-26), and moderate to severe cognitive impairment (MMSE ≤ 20). The general data, lifestyle habits, and scale scores of the three groups were compared. Ordered logistic regression was used to analyze the influencing factors of sleep quality. Results There were statistically significant differences in age, gender, waist circumference, body mass index (BMI), education level, pet ownership, smoking, drinking, mahjong playing behavior, exercise habits, and scale scores among the three groups (P<0.05). Logistic regression analysis showed that age, waist circumference, gender, drinking habits, mahjong playing behavior, and chronic comorbidities are influencing factors for the PSQI grading in the elderly (P<0.05). The MMSE score (OR=1.037, P=0.001), SCD score (OR=1.123, P<0.001), HAMA score (OR=1.183, P<0.001), PHQ-9 score (OR=1.249, P<0.001) are positive influencing factors for PSQI grading, while the MNA score is a negative influencing factor (OR=0.960, P=0.037). Conclusions Advanced age, female gender, low education level, no pet ownership, no mahjong playing behavior, no exercise habits, and poor sleep quality are risk factors for cognitive impairment in the elderly. Advanced age, female gender, no mahjong playing behavior and poor nutritional status are influencing factors for poor sleep quality in the elderly, and severe comorbidities, anxiety, depression, and subjective decline in cognitive function all affect sleep quality.
3.Scientific basis for acupuncture combined with neural stem cells for repairing spinal cord injury
Xiaomeng HUANG ; Zhilan ZHANG ; Wenya SHANG ; Jing HUANG ; Huilin WEI ; Bing LI ; Yafeng REN
Chinese Journal of Tissue Engineering Research 2025;29(19):4111-4121
BACKGROUND:Spinal cord injury is a neurological disorder caused by traumatic or non-traumatic events,often leading to severe functional impairment below the injured segment.In recent years,neural stem cell transplantation has been considered to have significant therapeutic potential in regulating the inflammatory response after spinal cord injury,inhibiting excessive proliferation of glial scars,and promoting nerve regeneration. OBJECTIVE:To review and discuss the potential mechanism of action of acupuncture and neural stem cell transplantation therapy in inhibiting spinal cord injury-induced secondary injury,and to delve into the scientific basis for its treatment of spinal cord injury. METHODS:PubMed,Elsevier,WanFang,and CNKI databases were searched using"spinal cord injury,acupuncture,neural stem cells,SDF-1α/CXCR4 axis"as Chinese and English search terms.Totally 96 articles were finally included.The research findings of acupuncture combined with neural stem cells in the treatment of spinal cord injury were summarized and analyzed,and the mechanism of this combination therapy in the treatment of secondary injury after spinal cord injury was summarized. RESULTS AND CONCLUSION:(1)The stromal-derived factor 1α(SDF-1α)/chemokine receptor 4(CXCR4)axis plays a crucial role in neural stem cell transplantation for spinal cord injury.This signaling mechanism not only affects neural stem cell migration,proliferation,and differentiation,but is also a key factor in determining the efficiency of stem cell homing to the injury site.Therefore,the regulation of targeting this axis is of great significance in enhancing the therapeutic effect of spinal cord injury.(2)Acupuncture,as a traditional Chinese medicine therapy,shows unique advantages in the regulation of secondary injury in spinal cord injury.It can effectively reduce secondary injury after spinal cord injury by regulating inflammatory response,inhibiting apoptosis,improving microcirculation,reducing glial scar formation,and counteracting oxidative stress.(3)Acupuncture was also able to influence the expression and function of the SDF-1α/CXCR4 axis,thereby enhancing the homing and survival ability of neural stem cells and promoting nerve regeneration and functional recovery.(4)The therapy combining acupuncture and stem cell transplantation is an innovative treatment strategy for spinal cord injury and suitable for repairing neural circuits.It combines the wisdom of traditional Chinese medicine with the advantages of modern biotechnology,providing a new treatment option for spinal cord injury patients.However,this combination therapy is still in the research and exploration stage,and its long-term efficacy and safety need to be further verified.(5)Taken together,acupuncture and neural stem cell transplantation for the treatment of spinal cord injury has great potential for clinical application,but in-depth research and optimization of treatment options are still needed.In the future,we look forward to further revealing the efficacy mechanism and optimal indications of this therapy through more clinical trials and mechanism studies,so as to bring better hope of recovery and more efficient therapeutic effects to spinal cord injury patients.
4.An empirical analysis on the association between sarcopenia and all-cause mortality in Chinese elderly residents
Jie KONG ; Shutie LI ; Pandeng HUANG ; Meihong LIU ; Dongjing REN
Shanghai Journal of Preventive Medicine 2025;37(2):148-155
ObjectiveTo investigate the association between variant degree of sarcopenia and all-cause mortality in Chinese elderly residents, and to provide insights into the prevention and control of sarcopenia in the elderly population. MethodsData from the China Health and Retirement Longitudinal Study (CHARLS) from 2011 and 2020 were analyzed, and a total of 2 792 subjects aged 65 years or older were selected according to the inclusion and exclusion criteria. Univariate and multivariate Cox proportional hazards regression analysis were performed to explore the potential factors influencing all-cause mortality among the elderly in China, and Kaplan-Meier curves were used to visualize the survival of elderly people with variant degree of sarcopenia. Finally, a multiple-adjusted Cox proportional hazards regression model was used to control the confounding factors and explore the association between sarcopenia and all-cause mortality. ResultsBefore adjusting potential covariates, univariate and multivariate Cox proportional hazards regression models showed that 10-year all-cause mortality was significantly associated with variant degree of sarcopenia, namely possible sarcopenia (HR=1.40, 95%CI: 1.1‒1.68, P<0.001), mild-to-moderate sarcopenia (HR=1.49, 95%CI:1.20‒1.86, P<0.001), and severe sarcopenia (HR=1.68, 95%CI: 1.29‒2.19, P<0.001); after adjusting all confounders, 10-year all-cause mortality remained to be significantly associated with variant degree of sarcopenia, including probable sarcopenia (HR=1.38, 95%CI: 1.15‒1.66, P<0.001), mild-to-moderate sarcopenia (HR=1.48, 95%CI: 1.19‒1.84, P<0.001) and severe sarcopenia (HR=1.71, 95%CI: 1.31‒2.23, P<0.001). ConclusionIn Chinese elderly residents, sarcopenia is positively associated with an increased risk of 10-year all-cause mortality, and the progression of sarcopenia is positively associated with an increased risk of death.
5.Effect of Linggui Zhugantang on Ventricular Remodeling After Myocardial Infarction and RhoA/ROCK Signaling Pathway
Han REN ; Wanzhu ZHAO ; Shushu WANG ; Rui CAI ; Yuanhong ZHANG ; Shengyi HUANG ; Jinling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):1-9
ObjectiveThis study aims to investigate the effects of Linggui Zhugantang (LGZGT) on ventricular remodeling (VR) in mice with myocardial infarction (MI) and its impact on the Ras homologgene A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway. MethodsThe MI model of mice was established by ligating the left anterior descending coronary artery (LAD). They were divided into the sham-operated group, the model group, the low-dose, medium-dose, and high-dose groups of LGZGT (2.34, 4.68, 9.36 g·kg-1), and the captopril group (3.25 mg·kg-1), with 10 mice in each group. After four weeks of continuous drug administration by gavage, the level of cardiac function in each group of mice was examined using small animal Doppler ultrasound. Hematoxylin-eosin (HE) staining and Masson staining was used to assess the morphological changes of myocardial tissue and calculate the rate of collagen fiber deposition in mouse myocardial tissue. Wheat germ agglutinin (WGA) staining was employed to compare the cross-sectional area of cardiomyocytes in each group of mice. The expression levels of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), type Ⅰcollagen (Col Ⅰ), Col Ⅲ, tissue inhibitor of metalloproteinase 1(TIMP1), B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Bcl-2, Caspase-3, and cleaved Caspase-3 were detected by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to evaluate the mRNA levels of the pathway-related genes RhoA, ROCK1, and ROCK2. The protein expression levels of RhoA, ROCK1, and ROCK2 were tested by Western blot. ResultsThe level of cardiac function was markedly declined in the model group compared to the sham-operated group(P<0.01). Myocardial tissue morphology changed significantly. The cross-sectional area of cardiomyocytes was significantly enlarged. The expression of α-SMA, MMP-2, Col Ⅰ, and Col Ⅲ was significantly upregulated(P<0.01), and TIMP1 protein expression was significantly reduced(P<0.01). The expressions of apoptosis-related proteins Bax were significantly up-regulated(P<0.01), while the expression of Bcl-2 protein was significantly decreased(P<0.01). The mRNA expression of RhoA, ROCK1, and ROCK2 were significantly upregulated (P<0.01). Compared to the model group, the low-dose, medium-dose, and high-dose groups of LGZGT and the captopril group significantly reversed the experimental results of the model group in a dose-dependent manner (P<0.05, P<0.01). ConclusionLGZGT significantly attenuated myocardial fibrosis, myocardial hypertrophy, and cardiomyocyte apoptosis after MI in mice and effectively reversed VR, the mechanism of which may be related to the modulation of the RhoA/ROCK signaling pathway.
6.Effect of Linggui Zhugantang on Ventricular Remodeling After Myocardial Infarction and RhoA/ROCK Signaling Pathway
Han REN ; Wanzhu ZHAO ; Shushu WANG ; Rui CAI ; Yuanhong ZHANG ; Shengyi HUANG ; Jinling HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):1-9
ObjectiveThis study aims to investigate the effects of Linggui Zhugantang (LGZGT) on ventricular remodeling (VR) in mice with myocardial infarction (MI) and its impact on the Ras homologgene A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway. MethodsThe MI model of mice was established by ligating the left anterior descending coronary artery (LAD). They were divided into the sham-operated group, the model group, the low-dose, medium-dose, and high-dose groups of LGZGT (2.34, 4.68, 9.36 g·kg-1), and the captopril group (3.25 mg·kg-1), with 10 mice in each group. After four weeks of continuous drug administration by gavage, the level of cardiac function in each group of mice was examined using small animal Doppler ultrasound. Hematoxylin-eosin (HE) staining and Masson staining was used to assess the morphological changes of myocardial tissue and calculate the rate of collagen fiber deposition in mouse myocardial tissue. Wheat germ agglutinin (WGA) staining was employed to compare the cross-sectional area of cardiomyocytes in each group of mice. The expression levels of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), type Ⅰcollagen (Col Ⅰ), Col Ⅲ, tissue inhibitor of metalloproteinase 1(TIMP1), B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Bcl-2, Caspase-3, and cleaved Caspase-3 were detected by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to evaluate the mRNA levels of the pathway-related genes RhoA, ROCK1, and ROCK2. The protein expression levels of RhoA, ROCK1, and ROCK2 were tested by Western blot. ResultsThe level of cardiac function was markedly declined in the model group compared to the sham-operated group(P<0.01). Myocardial tissue morphology changed significantly. The cross-sectional area of cardiomyocytes was significantly enlarged. The expression of α-SMA, MMP-2, Col Ⅰ, and Col Ⅲ was significantly upregulated(P<0.01), and TIMP1 protein expression was significantly reduced(P<0.01). The expressions of apoptosis-related proteins Bax were significantly up-regulated(P<0.01), while the expression of Bcl-2 protein was significantly decreased(P<0.01). The mRNA expression of RhoA, ROCK1, and ROCK2 were significantly upregulated (P<0.01). Compared to the model group, the low-dose, medium-dose, and high-dose groups of LGZGT and the captopril group significantly reversed the experimental results of the model group in a dose-dependent manner (P<0.05, P<0.01). ConclusionLGZGT significantly attenuated myocardial fibrosis, myocardial hypertrophy, and cardiomyocyte apoptosis after MI in mice and effectively reversed VR, the mechanism of which may be related to the modulation of the RhoA/ROCK signaling pathway.
7.Effect of Liuwei Dihuangwan on EMT and Expression of CSC Properties in 4T1 Cells by Regulating Myeloid-derived Suppressor Cells
Lixiang ZHENG ; Ling HUANG ; Huiwen GUO ; Biyao GONG ; Xiaoying REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):1-10
ObjectiveTo investigate the effect of Liuwei Dihuangwan drug-containing serum (LDP) on epithelial-mesenchymal transition (EMT) and the expression of cancer stem cell (CSC) properties in 4T1 cells from triple-negative breast cancer by intervening myeloid-derived suppressor cells (MDSCs). MethodsSPF-grade female SD rats were randomly divided into three groups, which were given 0.39, 1.94, 3.89 g·kg-1·d-1 suspension of Liuwei Dihuangwan for 7 days, respectively, to prepare low-, medium-, and high-dose LDPs. 4T1 cells were inoculated subcutaneously into the mammary glands of SPF-grade female Balb/c mice to construct a transplantation tumor model. Bone marrow cells were extracted from the tibia and femur and induced into MDSCs in vitro. The cell counting kit-8 (CCK-8) assay was used to detect the viability of 4T1 cells and MDSCs. The number of MDSCs and the expressions of CSC surface markers CD44 and CD24 in 4T1 cells were detected by flow cytometry (FC). The migration, invasion, and proliferation of 4T1 cells were detected by cell scratch assay, Transwell invasion assay, and plate colony-forming assay, respectively. Western blot (WB) was used to detect the protein expression of transforming growth factor-β (TGF-β), nuclear factor-κB (NF-κB), C-X-C motif chemokine ligand 2 (CXCL2), E-cadherin, and N-cadherin. The expression of EMT-related proteins E-cadherin and N-cadherin were detected by immunofluorescence (IF). ResultsCompared with the normal group, LDP showed no significant inhibitory effect on the cell viability of 4T1 cells, but it significantly reduced the viability and number of MDSCs and reduced the number of MDSCs, as well as the expression of TGF-β (P<0.05, P<0.01). The migration, invasion, and proliferation of 4T1 cells were increased after co-culture with MDSCs (P<0.05, P<0.01). The expressions of NF-κB, CXCL2, and N-cadherin and the proportion of CSC (CD44+CD24-) were elevated (P<0.05, P<0.01), while the expression of E-cadherin was decreased (P<0.05). After the intervention of MDSCs with LDP, followed by co-culture with 4T1 cells, the migration, invasion, and proliferation of 4T1 cells were obviously reduced (P<0.01). The expressions of NF-κB, CXCL2, and N-cadherin were decreased (P<0.05, P<0.01), and the expression of E-cadherin was increased (P<0.05, P<0.01). There was no statistical difference in the proportion of CSC (CD44+CD24-) in 4T1 cells. However, the proportion of CSC (CD44+CD24-) was decreased in the co-culture system of 4T1 cells and MDSCs with LDP intervention (P<0.05, P<0.01). ConclusionLDP can reduce the viability and number of MDSCs and the expression of TGF-β, NF-κB, and CXCL2, reverse EMT, and reduce the characteristic expression of CSC to inhibit the migration, invasion, and proliferation of 4T1 cells.
8.Effect of Liuwei Dihuangwan on EMT and Expression of CSC Properties in 4T1 Cells by Regulating Myeloid-derived Suppressor Cells
Lixiang ZHENG ; Ling HUANG ; Huiwen GUO ; Biyao GONG ; Xiaoying REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):1-10
ObjectiveTo investigate the effect of Liuwei Dihuangwan drug-containing serum (LDP) on epithelial-mesenchymal transition (EMT) and the expression of cancer stem cell (CSC) properties in 4T1 cells from triple-negative breast cancer by intervening myeloid-derived suppressor cells (MDSCs). MethodsSPF-grade female SD rats were randomly divided into three groups, which were given 0.39, 1.94, 3.89 g·kg-1·d-1 suspension of Liuwei Dihuangwan for 7 days, respectively, to prepare low-, medium-, and high-dose LDPs. 4T1 cells were inoculated subcutaneously into the mammary glands of SPF-grade female Balb/c mice to construct a transplantation tumor model. Bone marrow cells were extracted from the tibia and femur and induced into MDSCs in vitro. The cell counting kit-8 (CCK-8) assay was used to detect the viability of 4T1 cells and MDSCs. The number of MDSCs and the expressions of CSC surface markers CD44 and CD24 in 4T1 cells were detected by flow cytometry (FC). The migration, invasion, and proliferation of 4T1 cells were detected by cell scratch assay, Transwell invasion assay, and plate colony-forming assay, respectively. Western blot (WB) was used to detect the protein expression of transforming growth factor-β (TGF-β), nuclear factor-κB (NF-κB), C-X-C motif chemokine ligand 2 (CXCL2), E-cadherin, and N-cadherin. The expression of EMT-related proteins E-cadherin and N-cadherin were detected by immunofluorescence (IF). ResultsCompared with the normal group, LDP showed no significant inhibitory effect on the cell viability of 4T1 cells, but it significantly reduced the viability and number of MDSCs and reduced the number of MDSCs, as well as the expression of TGF-β (P<0.05, P<0.01). The migration, invasion, and proliferation of 4T1 cells were increased after co-culture with MDSCs (P<0.05, P<0.01). The expressions of NF-κB, CXCL2, and N-cadherin and the proportion of CSC (CD44+CD24-) were elevated (P<0.05, P<0.01), while the expression of E-cadherin was decreased (P<0.05). After the intervention of MDSCs with LDP, followed by co-culture with 4T1 cells, the migration, invasion, and proliferation of 4T1 cells were obviously reduced (P<0.01). The expressions of NF-κB, CXCL2, and N-cadherin were decreased (P<0.05, P<0.01), and the expression of E-cadherin was increased (P<0.05, P<0.01). There was no statistical difference in the proportion of CSC (CD44+CD24-) in 4T1 cells. However, the proportion of CSC (CD44+CD24-) was decreased in the co-culture system of 4T1 cells and MDSCs with LDP intervention (P<0.05, P<0.01). ConclusionLDP can reduce the viability and number of MDSCs and the expression of TGF-β, NF-κB, and CXCL2, reverse EMT, and reduce the characteristic expression of CSC to inhibit the migration, invasion, and proliferation of 4T1 cells.
9.Study on the in vivo intestinal absorption and tissue distribution of silybin nanocrystals prepared by two methods
Mengyan WANG ; Ying SUN ; Sirui HUANG ; Yabo REN ; Jinhua CHANG ; Xigang LIU
China Pharmacy 2025;36(11):1335-1339
OBJECTIVE To investigate the absorption characteristics and tissue distribution of silybin (Sy) nanocrystals prepared by two methods in different intestinal segments of rats. METHODS Sy nanocrystals (i.e. Sy-NS-G and Sy-NS-F) with comparable particle sizes were prepared using high-pressure homogenization and anti-solvent precipitation methods, respectively. Rats were randomly divided into three groups: Sy raw drug group, Sy-NS-G group, and Sy-NS-F group. Each group was further divided into three subgroups with low, medium, and high (60, 120, 180 μg/mL) mass concentrations (calculated based on Sy), with 3 rats in each subgroup. The absorption rate constant (Ka) and apparent absorption coefficient (Papp) of Sy raw drug, Sy-NS-G and Sy-NS-F in different intestinal segments were investigated by using the in vivo one-way intestinal perfusion experiment. Additionally, the rats were divided into three groups: Sy raw drug group, Sy-NS-G group, and Sy-NS-F group, with 20 rats in each group. Rats in each group were administered a single intragastric dose of 50 mg/kg (calculated based on Sy). They were sacrificed at 0.3, 1, 4, 10, and 24 hours post-administration respectively, to investigate the tissue distribution of Sy raw drug, Sy- NS-G, and Sy-NS-F in the heart, liver, spleen, lungs, kidneys, brain and intestines. RESULTS In duodenum and jejunum, the Ka and Papp of the nanocrystals prepared by the two methods remained unchanged with the increase of Sy concentration, and there was no significant difference (P>0.05); the absorption of Sy-NS-F in the duodenum was greater than that of Sy-NS-G; the absorption sites of Sy-NS-G and Sy raw drug were mainly in the ileum, while those of Sy-NS-F were mainly in the duodenum and ileum. The concentrations of Sy-NS-G and Sy-NS-F in different tissues of rats were different; Sy-NS-G peaked in most tissues at 1 h, and the distribution concentration was as follows: intestine>spleen>heart>lungs>liver≈brain>kidneys. Sy-NS-F reached its peak at 1 h, and the distribution concentration was in the order of intestine>spleen>kidney>lung>heart≈liver>brain. CONCLUSIONS The absorption mode of Sy nanocrystals in the duodenum and ileum is mainly passive diffusion. In the duodenum, the absorption of Sy-NS-F is greater than that of Sy-NS-G; there are significant differences in the tissue distribution of Sy-NS-G and Sy-NS-F in rats.
10.TLR4 and IFN - γ Activated Mesenchymal Stem Cells Improve Schistosomiasis Liver Fibrosis by Regulating Macrophage Polarization
Yaojia REN ; Fang CHEN ; Wanxian HUANG ; Zhongdao WU ; Junxia LEI
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(3):410-419
ObjectiveTo investigate whether co-activated mesenchymal stem cells(MSCs) exert therapeutic effects against schistosomiasis by modulating macrophage polarization. MethodsTwenty adult male Balb/c mice were randomly divided into four groups: uninfected, infected, MSC-treated, and MSCTLR4+IFN-γ-treated groups. The Schistosoma japonicum infection model was established via abdominal patch method with cercariae. At week 5 post-infection, praziquantel was administered orally for antiparasitic treatment. At week 6, mice received either MSCs treatments (with or without pre-activation) or no treatment. Body weight changes were monitored weekly. Hepatic pathological alterations were evaluated via HE and Masson staining. RT-qPCR was used to assess α-SMA and collagen (Col-I, Col-Ⅲ) mRNA levels to quantify fibrosis. The mRNA levels of hepatic inflammatory cytokines and matrix metalloproteinases(MMP) were analyzed to explore fibrotic mechanisms. The expressions of i-Nos and Arg-1 in liver tissues were detected by RT-qPCR, and the ratio of M1 or M2 macrophages was detected by immunofluorescence staining, aiming to analyze the correlation between MSCs treatment and macrophage polarization. An in vitro co-culture system validated direct MSC-macrophage interactions. ResultsCompared with the infected group, the MSCTLR4+IFN-γ group exhibited increased body weight gain (P< 0.01), reduced hepatic granulomatous lesion area (P< 0.001), and decreased α-SMA, Col-I, and Col-Ⅲ mRNA levels (P< 0.01). Additionally, the MSCTLR4+IFN-γ group showed reduced TNF-α and IL-1β expression (P< 0.05), as well as elevated MMP2, Mmp9, and MMP13 levels (P< 0.01). The MSCTLR4+IFN-γ group showed higher expression of M2 marker Arg-1 mRNA compared with the infection group (P < 0.001) , while the expression of M1 marker i-Nos decreased (P< 0.05). Immunofluorescence confirmed a lower i-Nos+ cell ratio (P< 0.05) and higher F4/80+CD206+ cell ratio (P< 0.000 1) in the MSCTLR4+IFN-γ group compared with the infection group. In vitro co-culture experiments further demonstrated that MSCTLR4+IFN-γ promoted Arg-1 expression, suppressed pro-inflammatory cytokine i-Nos and TNF-α levels, consistent with ELISA results. ConclusionsThis study reveals that TLR4 and IFN-γ co-activated MSCs alleviate Schistosoma japonicum-induced hepatic fibrosis, potentially through modulating macrophage polarization toward the M2 phenotype. This mechanism may suppress inflammation and enhance extracellular matrix degradation, providing a therapeutic strategy for schistosomiasis-associated liver fibrosis.


Result Analysis
Print
Save
E-mail