1.Industrial development and biomedical application prospect of recombinant collagen.
Rongzhan FU ; Daidi FAN ; Wanjuan YANG ; Liang CHEN ; Ci QU ; Shulin YANG ; Liming XU
Chinese Journal of Biotechnology 2022;38(9):3228-3242
Recombinant collagen, as an alternative to natural collagen, has the potential to be widely used in biomaterials, biomedicine, etc. Diverse recombinant collagens and their variants can be industrially produced in a variety of expression systems, which lays a foundation for exploring and expanding the clinical application of recombinant collagens. We reviewed different expression systems for recombinant collagens, such as prokaryotic expression systems, yeast expression systems, as well as plant, insect, mammal, and human cell expression systems, and introduced the advantages, potential applications, and limitations of recombinant collagen. In particularly, we focused on the current progress in the recombinant collagen production, including recombinant expression system construction and hydroxylation strategies of recombinant collagen, and summarized the current biomedical applications of recombinant collagen.
Animals
;
Biocompatible Materials
;
Collagen/biosynthesis*
;
Humans
;
Hydroxylation
;
Recombinant Proteins/biosynthesis*
2.Site-specific monoPEGylated interferon alpha2a mediated by microbial transglutaminase.
Xiwu HUI ; Weirong CAO ; Di ZHANG ; Wenli GE ; Shuli LI ; Yingui LI
Chinese Journal of Biotechnology 2020;36(4):750-762
PEGylation is considered one of the most successful techniques to improve the characteristics of protein drugs including to increase the circulating half-life of proteins in blood and to decrease their immunogenicity and antigenicity. One known PEG modification method is to attach PEG to the free amino group, typically at lysine residues or at the N-terminal amino acid with no selectivity, resulting in a heterogeneous product mixture. This lack of selectivity can present problems when a therapeutic PEGylated protein is being developed, because predictability of activity and manufacturing reproducibility are needed for regulatory approval. Enzymatic PEGylation of proteins is one route to overcome this limitation. Transglutaminases (TGase) are enzyme candidates for site-specific PEGylation. We use human interferon alpha 2a (IFN α2a) as a test case, and predict that the potential modification residues are Gln101 by computational approach as it contains 12 potential PEGylation sites. IFN α2a was PEGylated by Y shaped PEG40k-NH2 mediated by microbial transglutaminase. Our results show that the microbial transglutaminase mediated PEGylation of IFN α2a was site-specific only at the site of Gln101 in IFN α2a, yielding the single mono-conjugate PEG-Gln101-IFN α2a with a mass of 59 374.66 Da. Circular dichroism studies showed that PEG-Gln101-IFN α2a preserved the same secondary structures as native IFN α2a. As expected, the bioactivity and pharmacokinetic profile in rats of PEG-Gln101-IFN α2a revealed a significant improvement to unmodified IFN α2a, and better than PEGASYS.
Animals
;
Antiviral Agents
;
Humans
;
Interferon alpha-2
;
metabolism
;
Interferon-alpha
;
biosynthesis
;
pharmacokinetics
;
Polyethylene Glycols
;
pharmacokinetics
;
Protein Structure, Secondary
;
Rats
;
Recombinant Proteins
;
biosynthesis
;
pharmacokinetics
;
pharmacology
;
Reproducibility of Results
;
Transglutaminases
;
metabolism
3.Isolation and characterization of a novel strain (YH01) of Micropterus salmoides rhabdovirus and expression of its glycoprotein by the baculovirus expression system.
Sun-Jian LYU ; Xue-Mei YUAN ; Hai-Qi ZHANG ; Wei-da SHI ; Xiao-Ying HANG ; Li LIU ; Ying-Lei WU
Journal of Zhejiang University. Science. B 2019;20(9):728-739
As one of the most important aquatic fish, Micropterus salmoides suffers lethal and epidemic disease caused by rhabdovirus at the juvenile stage. In this study, a new strain of M. salmoides rhabdovirus (MSRV) was isolated from Yuhang, Zhejiang Province, China, and named MSRV-YH01. The virus infected the grass carp ovary (GCO) cell line and displayed virion particles with atypical bullet shape, 300-500 nm in length and 100-200 nm in diameter under transmission electron microscopy. The complete genome sequence of this isolate was determined to include 11 526 nucleotides and to encode five classical structural proteins. The construction of the phylogenetic tree indicated that this new isolate is clustered into the Vesiculovirus genus and most closely related to the Siniperca chuatsi rhabdovirus. To explore the potential for a vaccine against MSRV, a glycoprotein (1-458 amino acid residues) of MSRV-YH01 was successfully amplified and cloned into the plasmid pFastBac1. The high-purity recombinant bacmid-glycoprotein was obtained from DH10Bac through screening and identification. Based on polymerase chain reaction (PCR), western blot, and immunofluorescence assay, recombinant virus, including the MSRV-YH01 glycoprotein gene, was produced by transfection of SF9 cells using the pFastBac1-gE2, and then repeatedly amplified to express the glycoprotein protein. We anticipate that this recombinant bacmid system could be used to challenge the silkworm and develop a corresponding oral vaccine for fish.
Animals
;
Baculoviridae/metabolism*
;
Bass/metabolism*
;
Carps/virology*
;
Cell Line
;
Female
;
Genetic Techniques
;
Genome, Viral
;
Glycoproteins/biosynthesis*
;
Insecta
;
Ovary/virology*
;
Phylogeny
;
Plasmids/metabolism*
;
Recombinant Proteins/biosynthesis*
;
Rhabdoviridae/metabolism*
4.Differential Inhibition of Nav1.7 and Neuropathic Pain by Hybridoma-Produced and Recombinant Monoclonal Antibodies that Target Nav1.7 : Differential activities of Nav1.7-targeting monoclonal antibodies.
Sangsu BANG ; Jiho YOO ; Xingrui GONG ; Di LIU ; Qingjian HAN ; Xin LUO ; Wonseok CHANG ; Gang CHEN ; Sang-Taek IM ; Yong Ho KIM ; Judith A STRONG ; Ma-Zhong ZHANG ; Jun-Ming ZHANG ; Seok-Yong LEE ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):22-41
The voltage-gated Na channel subtype Nav1.7 is important for pain and itch in rodents and humans. We previously showed that a Nav1.7-targeting monoclonal antibody (SVmab) reduces Na currents and pain and itch responses in mice. Here, we investigated whether recombinant SVmab (rSVmab) binds to and blocks Nav1.7 similar to SVmab. ELISA tests revealed that SVmab was capable of binding to Nav1.7-expressing HEK293 cells, mouse DRG neurons, human nerve tissue, and the voltage-sensor domain II of Nav1.7. In contrast, rSVmab showed no or weak binding to Nav1.7 in these tests. Patch-clamp recordings showed that SVmab, but not rSVmab, markedly inhibited Na currents in Nav1.7-expressing HEK293 cells. Notably, electrical field stimulation increased the blocking activity of SVmab and rSVmab in Nav1.7-expressing HEK293 cells. SVmab was more effective than rSVmab in inhibiting paclitaxel-induced mechanical allodynia. SVmab also bound to human DRG neurons and inhibited their Na currents. Finally, potential reasons for the differential efficacy of SVmab and rSVmab and future directions are discussed.
Animals
;
Antibodies, Monoclonal
;
therapeutic use
;
Biotin
;
metabolism
;
Cells, Cultured
;
Disease Models, Animal
;
Female
;
Ganglia, Spinal
;
cytology
;
HEK293 Cells
;
Humans
;
Hybridomas
;
chemistry
;
Hyperalgesia
;
drug therapy
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NAV1.5 Voltage-Gated Sodium Channel
;
metabolism
;
NAV1.7 Voltage-Gated Sodium Channel
;
chemistry
;
immunology
;
metabolism
;
Neuralgia
;
drug therapy
;
metabolism
;
Protein Binding
;
drug effects
;
Recombinant Proteins
;
biosynthesis
;
therapeutic use
;
Sensory Receptor Cells
;
drug effects
;
physiology
5.HPPR encodes the hydroxyphenylpyruvate reductase required for the biosynthesis of hydrophilic phenolic acids in Salvia miltiorrhiza.
Guo-Quan WANG ; Jun-Feng CHEN ; Bo YI ; He-Xin TAN ; Lei ZHANG ; Wan-Sheng CHEN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):917-927
Salvia miltiorrhiza is a medicinal plant widely used in the treatment of cardiovascular and cerebrovascular diseases. Hydrophilic phenolic acids, including rosmarinic acid (RA) and lithospermic acid B (LAB), are its primary medicinal ingredients. However, the biosynthetic pathway of RA and LAB in S. miltiorrhiza is still poorly understood. In the present study, we accomplished the isolation and characterization of a novel S. miltiorrhiza Hydroxyphenylpyruvate reductase (HPPR) gene, SmHPPR, which plays an important role in the biosynthesis of RA. SmHPPR contained a putative catalytic domain and a NAD(P)H-binding motif. The recombinant SmHPPR enzyme exhibited high HPPR activity, converting 4-hydroxyphenylpyruvic acid (pHPP) to 4-hydroxyphenyllactic acid (pHPL), and exhibited the highest affinity for substrate 4-hydroxyphenylpyruvate. SmHPPR expression could be induced by various treatments, including SA, GA, MeJA and Ag, and the changes in SmHPPR activity were correlated well with hydrophilic phenolic acid accumulation. SmHPPR was localized in cytoplasm, most likely close to the cytosolic NADPH-dependent hydroxypyruvate reductase active in photorespiration. In addition, the transgenic S. miltiorrhiza hairy roots overexpressing SmHPPR exhibited up to 10-fold increases in the products of hydrophilic phenolic acid pathway. In conclusion, our findings provide a new insight into the synthesis of active pharmaceutical compounds at molecular level.
Amino Acid Sequence
;
Benzofurans
;
Biosynthetic Pathways
;
genetics
;
Cinnamates
;
Depsides
;
Gene Expression Regulation, Plant
;
genetics
;
Oxidoreductases
;
genetics
;
Phenylpropionates
;
metabolism
;
Phenylpyruvic Acids
;
metabolism
;
Phylogeny
;
Plant Proteins
;
genetics
;
metabolism
;
Plant Roots
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Plants, Genetically Modified
;
Recombinant Proteins
;
analysis
;
biosynthesis
;
Salvia miltiorrhiza
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Sequence Alignment
6.Construction of a GFP-fused mouse PACRG baculovirus recombinant vector and expression of the fusion protein in Sf9 inset cells.
Jun-Pin LIU ; Hong-Tao LI ; Wei LI ; Hong LIU ; Ling ZHANG ; Jie MIN ; Ting ZHOU ; Lei ZHOU ; Zhi-Bing ZHANG
National Journal of Andrology 2016;22(7):591-595
ObjectiveTo construct a GFP-fused mouse Parkin co-regulated gene (PACRG) baculovirus recombinant PACRG/GFP-pFastBac1 vector and express the fusion protein in Sf9 insect cells.
METHODSFull-length mouse PACRG cDNA was amplified by PCR and cloned in frame to the vector pFastBac1 with eGFP (rpFBac-PACRG-GFP recombinant vector). The plasmid was transformed into DH10Bac cells to obtain the recombinant bacmid plasmid, the bacmid was transfected into Sf9 insect cells, and the expressed PACRG/GFP fusion protein was analyzed by Western blot and fluorescence microscopy.
RESULTSThe construction of the PACRG/GFP-pFastBac1 baculovirus plasmid was confirmed by sequencing and restriction enzyme digestion. Western blot showed the expression of the fusion protein carrying a green fluorescence in the Sf9 insect cells.
CONCLUSIONSConclusion: A PACRG/GFP-pFastBac1 recombinant baculovirus vector was successfully constructed and the fusion protein was highly expressed in the Sf9 insect cells. Our findings have provided a basis for further studies on the structure of the PACRG protein and regulation of spermatogenesis.
Animals ; Baculoviridae ; Blotting, Western ; DNA, Complementary ; Genetic Vectors ; Green Fluorescent Proteins ; biosynthesis ; Mice ; Plasmids ; Polymerase Chain Reaction ; Proteins ; genetics ; metabolism ; Recombinant Fusion Proteins ; biosynthesis ; Sf9 Cells ; Transfection
7.Identification and expression patterns of anterior silk gland specific cuticle protein Bm11721 in the silkworm (Bombyx mori).
Kang XIE ; Xin WANG ; Huifang CHEN ; Yi LI ; Qianru SONG ; Ping ZHAO
Chinese Journal of Biotechnology 2016;32(1):64-73
The silk gland of silkworm is the organ of silk protein synthesis and secretion. According to the morphological and functional differences, silk gland can be divided into anterior silk gland (ASG), middle silk gland (MSG) and posterior silk gland (PSG). ASG is the place for silk proteins conformation changes although it cannot synthetize silk proteins. ASG has narrow luminal structures and rigid wall which consists of chitin and cuticle proteins so that it can provide the shearing force which plays an important role in the silk protein conformation changes. The objective of this study is to identify the new chitin binding proteins in ASG of silkworm (Bombyx mori), and to analyze their expression patterns in different tissues. We identified a cuticle protein with chitin binding domain Bml1721 (GenBank Accession No. NM-001173285.1) by chitin affinity chromatography column. We also expressed the recombinant protein as inclusion body using the prokaryotic expression system, and then successfully purified the recombinant protein by nickel affinity chromatography column to generate the polyclonal antibodies. The expression patterns analysis in various tissues showed that both in transcriptional and protein levels Bm11721 was specifically expressed in ASG. Furthermore, the expression level of Bm 11721 protein was unchanged during the 5th instar. Immunofluorescence analysis revealed that Bm1 1721 was located in the ASG inner membrane. It is proposed that Bm11721 is a component of inner membrane and probably provides the shearing force for conformational changes.
Animals
;
Bombyx
;
genetics
;
metabolism
;
Chitin
;
metabolism
;
Insect Proteins
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
Silk
;
biosynthesis
8.Expression of Pleurocidin from winter flounder in Escherichia coli and optimization of culture conditions.
Xuejiao XU ; Xiangdong ZHA ; Yuanyuan CHE ; Lijuan MA ; Siqun WU ; Peilong YANG ; Huoqing HUANG ; Bin YAO
Chinese Journal of Biotechnology 2016;32(3):365-374
To express Pleurocidin in Escherichia coli and to enhance the secretory efficiency of the fusion protein, the gene encoding Pleurocidin was ligated with Cherry DNA sequence via blunt-end ligation. Then this fusion gene was cloned into pET22b (+) vector and the recombinant plasmid was transformed into E. coli BL21 (DE3). Lactose was used to induce expression of fusion protein. The recombinant plasmid pET22b (+) -CP was successfully constructed and high-level expression of fusion protein was induced with lactose. Statistics showed that addition of glycine after 16 h of induction significantly enhanced the secretory efficiency of the fusion protein. After hydrolysis of the fusion protein by diluted hydrochloric acid and some further purification steps, r-Pleurocidin was obtained with antibacterial activity against E. coli DH5α and Bacillus subtilis BS168. In conclusion, the fusion protein was expressed in E. coli and biologically active r-Pleurocidin was obtained after hydrochloric acid cleavage and purification.
Animals
;
Cloning, Molecular
;
Escherichia coli
;
metabolism
;
Fish Proteins
;
biosynthesis
;
Flounder
;
Recombinant Fusion Proteins
;
biosynthesis
9.Transcriptome analysis of Pichia pastoris in response to ethanol stress.
Peng GAO ; Jian DING ; Xu ZHANG ; Yue ZHAO ; Meng ZHANG ; Minjie GAO ; Jianrong WU ; Xiaobei ZHAN
Chinese Journal of Biotechnology 2016;32(5):584-598
Effective expression of pIFN-α in recombinant Pichia pastoris was conducted in a 5 L fermentor. Ethanol accumulation during the late glycerol feeding period inhibited heterologous protein expression. Comparative transcriptome analysis was thus performed to compare the gene transcription profiles of Pichia pastoris KM71H in high and low ethanol concentration environments. The results showed that during the glycerol cultivation stage, 545 genes (265 up-regulated and 280 down-regulated) were differentially expressed with ethanol stress. These genes were mainly involved in protein synthesis, energy metabolism, cell cycle and peroxisome metabolism. During the methanol induction stage, 294 genes (171 up-regulated and 123 down-regulated) were differentially expressed, which were mainly related to methanol metabolism, amino acid metabolism and protein synthesis. Ethanol stress increased protein misfolding and reduced structural integrity of ribosome and mitochondria during cultivation stage, and led to the failure of endoplasmic reticulum stress removal and damaged amino acid metabolism during induction stage in Pichia pastoris.
Amino Acids
;
metabolism
;
Bioreactors
;
Endoplasmic Reticulum Stress
;
Energy Metabolism
;
Ethanol
;
chemistry
;
Gene Expression Profiling
;
Gene Expression Regulation, Fungal
;
Glycerol
;
Methanol
;
Pichia
;
metabolism
;
Protein Biosynthesis
;
drug effects
;
Protein Folding
;
Recombinant Proteins
;
biosynthesis
;
Transcriptome
10.Prokaryotic expression, purification and identification of recombinant human atrial natriuretic peptide.
Chenhui CHEN ; Ziye ZHAO ; Jin XU ; Xuesong CAO ; Shangjing GUO ; Jun LI ; Hao WANG ; Sheng HOU
Chinese Journal of Biotechnology 2016;32(9):1273-1285
In order to improve the expression of recombinant human atrial natriuretic peptide (ANP), a new plasmid (pET28a(+)/ANP₃) containing 3 tandem ANP genes with lysine codon as the interval linker, was constructed. Target gene was transformed into Escherichia coli BL21 (DE3) and induced by IPTG, about 60% of the total-cell-protein was the target protein, His₆-ANP₃. After denaturation and refolding, it was digested by Endoproteinase Lys-C and Carboxypeptidase B (CPB) and then purified by a series of purification processes, about 16 mg purified ANP monomer could be obtained from one liter bacteria broth of shaking culture. Ultimately, the purity of protein was above 90% determined by UPLC and Tricine SDS-PAGE, its molecular weight was 3 080 Da according to LC-MS identification and it was proved to be equivalent to the reference product by ELISA. The use of tandem gene expression can provide a new possible model for the expression of other peptide drugs.
Atrial Natriuretic Factor
;
biosynthesis
;
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli
;
metabolism
;
Gene Expression
;
Humans
;
Metalloendopeptidases
;
Peptides
;
Plasmids
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis

Result Analysis
Print
Save
E-mail