1.Research progress of the regulation of orphan nuclear receptors on chronic liver diseases.
Zhi-Hui YANG ; Jia-Hui WANG ; Lei WANG ; Xue-Lin DUAN ; Hong-Hong WANG ; Yue PENG ; Tie-Jian ZHAO ; Yang ZHENG
Acta Physiologica Sinica 2023;75(4):555-568
The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.
Humans
;
Orphan Nuclear Receptors/metabolism*
;
Receptors, Steroid/physiology*
;
Ligands
;
Liver
;
Liver Diseases
;
Intercellular Signaling Peptides and Proteins
2.Sirt1 regulates testosterone biosynthesis in Leydig cells via modulating autophagy.
Muhammad Babar KHAWAR ; Chao LIU ; Fengyi GAO ; Hui GAO ; Wenwen LIU ; Tingting HAN ; Lina WANG ; Guoping LI ; Hui JIANG ; Wei LI
Protein & Cell 2021;12(1):67-75
Animals
;
Autophagy/genetics*
;
Cholesterol/metabolism*
;
Gene Expression Regulation
;
Integrases/metabolism*
;
Leydig Cells/metabolism*
;
Male
;
Mice, Knockout
;
Multienzyme Complexes/metabolism*
;
Phosphoproteins/metabolism*
;
Primary Cell Culture
;
Progesterone Reductase/metabolism*
;
RNA Splicing Factors/metabolism*
;
Scavenger Receptors, Class B/metabolism*
;
Sequestosome-1 Protein/metabolism*
;
Signal Transduction
;
Sirtuin 1/genetics*
;
Sodium-Hydrogen Exchangers/metabolism*
;
Steroid 17-alpha-Hydroxylase/metabolism*
;
Steroid Isomerases/metabolism*
;
Testosterone/genetics*
3.Pharmacology research on PXR as a potential target in screening bioactive components of Chinese material medica.
Yu-guang WANG ; Xian-xie ZHANG ; Han LI ; Bei-bei LU ; Jian-ming ZHOU ; Hao-sheng LIU ; Dong-hua HU ; Tao ZHOU ; Ya-xin ZHANG ; Zeng-chun MA ; Qian-de LIANG ; Xiang-lin TANG ; Cheng-rong XIAO ; Hong-ling TAN ; Yue GAO
China Journal of Chinese Materia Medica 2015;40(17):3444-3449
Pregnane X receptor (PXR) is key transcription factors which mainly regulate the expression of CYP3A genes. At the molecular level, PXR has been revealed the protection mechanism of the body against xenochemicals and a major mode of the drug-drug interactions. Besides playing an important role in drug metabolism and interactions, PXR and its target genes also play an important role in maintaining normal physiological function and homeostasis. Therefore, it is necessary to study the regulation of PXR and its related pharmacological effects of TCM and natural products, and to provide new clues for the new pharmacological pathway.
Animals
;
Drug Evaluation, Preclinical
;
Drugs, Chinese Herbal
;
pharmacology
;
Gene Expression
;
drug effects
;
Humans
;
Receptors, Steroid
;
antagonists & inhibitors
;
genetics
;
metabolism
4.The role of arecoline on hepatic insulin resistance in type 2 diabetes rats.
Hong-Yan LING ; Qi-Xin YAO ; Zhu-Qing QI ; Si-Si YANG ; Jian-Qin HE ; Kai-Fang ZHANG ; Bi HU
Chinese Journal of Applied Physiology 2014;30(3):208-212
OBJECTIVETo explore the effects of arecoline on hepatic insulin resistance in type 2 diabetes rats and to elucidate its possible mechanism.
METHODSForty five Wistar rats were fed with high fructose diet for 12 weeks to induce type 2 diabetic rat model. rats were randomly divided into 5 groups (n = 8): control group, model group and model group were treated with different dose (0, 0.5, 1, 5 mg/kg) of arecoline. After 4 weeks, the fasting blood glucose, blood lipid and insulin level measured , mRNA expression of liver constitutive androstane receptor (CAR), pregnane X receptor (PXR), glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were detected by reverse transcription polymerase chain reaction (RT-PCR), the protein expression of p-AKT and glucose transporter4 (GLUT4) were detected by Western blot.
RESULTS1.5 mg/kg arecoline could significantly decrease the level of fasting blood glucose, blood lipid, blood insulin level and liver G6Pase, PEPCK, IL-6, TNF-alpha mRNA level in type 2 diabetes rats. 1.5 mg/kg arecoline also could significantly increase CAR, PXR mRNA level and p-AKT and GLUT4 protein expression.
CONCLUSIONArecoline improved hepatic insulin resistance in type 2 diabetes rats by increasing the mRNA levels of CAR and PXR leading to the creased glucose metabolism and inflammation related genes expression.
Animals ; Arecoline ; pharmacology ; Diabetes Mellitus, Experimental ; metabolism ; Diabetes Mellitus, Type 2 ; metabolism ; Glucose Transporter Type 4 ; metabolism ; Glucose-6-Phosphatase ; metabolism ; Insulin Resistance ; Interleukin-6 ; metabolism ; Intracellular Signaling Peptides and Proteins ; metabolism ; Liver ; drug effects ; metabolism ; Male ; Phosphoenolpyruvate Carboxykinase (GTP) ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Wistar ; Receptors, Cytoplasmic and Nuclear ; metabolism ; Receptors, Steroid ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
5.Screening active components in compound danshen based on PXR-CYP3A4: an experimental study.
Yong XIAO ; Zeng-chun MA ; Yu-gaung WANG ; Hong-ling TAN ; Hao-sheng LIU ; Xian-xie ZHANG ; Bei-bei LU ; Xiang-lin TANG ; Qian-de LINAG ; Cheng-rong XIAO
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(5):606-610
OBJECTIVETo screen active components in Compound Danshen (CD) based on pregnane X receptor-cytochrome P450 3A4 (PXR-CYP3A4).
METHODSBy using PXR-CYP3A stable transfection human hepatoblastoma G2 (HepG2) cell lines engineering cell strain combined reporter genes technology, active components that induce or inhibit PXR-CYP3A4 paths in CD were screened, and confirmed at the level of enzymic activities. The experiment was divided into the positive control group (RIF 10 micro mol/L), the DMSO group (DMSO 0.1%), each dose of treatment groups (ginsenoside Rc, Rf, Rb2, Rg2, F2, F1, tanshinone I , isoborneol 5, 10, 25, 50, 100, and 200 micro mol/L; each with six duplicates). Cells medium was removed 36, 48, and 60 h after treatment. The activity of CYP3A4 was then determined in the supernant and the fold induction was calculated.
RESULTSCompared with the DMSO group, the fold induction increased when ginsenoside Rc, Rf, Rb2, Rg2, F2, F1, tanshinone I , and isoborneol 50 and 100 micro mol/L was respectively intervened for 36, 48, and 60 h (P <0.05). When cells were treated with isoborneol 200 micro mol/L for 48 and 60 h,the fold induction of ginsenoside Rb2, Rg2, and F1 was significantly higher than that of the RIF group (P <0.05). Enzymic activity results showed that ginsenoside Rc, Rf, Rb2, F2, and F1 could increase the enzyme activity of CYP3A4 at 48 h (P <0.05).
CONCLUSIONGinsenoside Rc, Rf, Rb2, F2, F1, tanshinone I, and isoborneol in DC could induce CYP3A4 enzymes.
Cytochrome P-450 CYP3A ; metabolism ; Diterpenes, Abietane ; Drugs, Chinese Herbal ; chemistry ; Genes, Reporter ; Ginsenosides ; metabolism ; Hep G2 Cells ; Humans ; Receptors, Steroid ; metabolism ; Salvia miltiorrhiza ; Transfection
6.Insights into battles between Mycobacterium tuberculosis and macrophages.
Guanghua XU ; Jing WANG ; George Fu GAO ; Cui Hua LIU
Protein & Cell 2014;5(10):728-736
As the first line of immune defense for Mycobacterium tuberculosis (Mtb), macrophages also provide a major habitat for Mtb to reside in the host for years. The battles between Mtb and macrophages have been constant since ancient times. Triggered upon Mtb infection, multiple cellular pathways in macrophages are activated to initiate a tailored immune response toward the invading pathogen and regulate the cellular fates of the host as well. Toll-like receptors (TLRs) expressed on macrophages can recognize pathogen-associated-molecular patterns (PAMPs) on Mtb and mediate the production of immune-regulatory cytokines such as tumor necrosis factor (TNF) and type I Interferons (IFNs). In addition, Vitamin D receptor (VDR) and Vitamin D-1-hydroxylase are up-regulated in Mtb-infected macrophages, by which Vitamin D participates in innate immune responses. The signaling pathways that involve TNF, type I IFNs and Vitamin D are inter-connected, which play critical roles in the regulation of necroptosis, apoptosis, and autophagy of the infected macrophages. This review article summarizes current knowledge about the interactions between Mtb and macrophages, focusing on cellular fates of the Mtb-infected macrophages and the regulatory molecules and cellular pathways involved in those processes.
Animals
;
Apoptosis
;
Autophagy
;
Humans
;
Interferon Type I
;
metabolism
;
Macrophages
;
immunology
;
metabolism
;
Mycobacterium tuberculosis
;
physiology
;
Receptors, Calcitriol
;
metabolism
;
Steroid Hydroxylases
;
metabolism
;
Toll-Like Receptors
;
metabolism
;
Tuberculosis
;
immunology
;
metabolism
;
pathology
;
Tumor Necrosis Factors
;
metabolism
7.Study on effect of Curculiginis Rhizoma and its active ingredient on PXR-CYP3A of L02 cells in different states.
Chun-Miao XUE ; Bing ZHANG ; Zhi-Jian LIN
China Journal of Chinese Materia Medica 2013;38(19):3348-3352
OBJECTIVETo define the effect of Curculiginis Rhizoma and its active ingredient orcinol glucoside on PXR-CYP3A of L02 cells in normal and deficiency-cold states, in order to lay a foundation for studies on the mechanism of efficacy expression differentiation of Curculiginis Rhizoma in different states.
METHODSerums of normal and deficiency-cold rats were adopted to culture L02 cells and induce cells in normal and deficiency-cold states. After aqueous extracts from Curculiginis Rhizoma and its active ingredient orcinol glucoside were used in cells in different states, PXR protain expression and CYP3A activity of L02 cells in normal and deficiency-cold states were observed.
RESULTMTT results showed that aqueous extracts from Curculiginis Rhizoma and orcinol glucoside could significantly enhance viability of L02 cells. Aqueous extracts from Curculiginis Rhizoma could significantly reduce PXR protein expression of L02 cells in normal state, while orcinol glucoside could significantly reduce CYP3A activity and PXR protein expression of L02 cells in normal state. Meanwhile, aqueous extracts from Curculiginis Rhizoma could significantly increase CYP3A activity and PXR protein expression of L02 cells in deficiency-cold state, while orcinol glucoside could significantly reduce CYP3A activity and increase PXR protein expression of L02 cells in deficiency-cold state.
CONCLUSIONCurculiginis Rhizoma can activate PXR and induce CYP3A activity of L02 cells in deficiency-cold state, but with no effect or even counteraction on PXR and its induced CYP3A of L02 cells in normal state.
Animals ; Cell Line ; Cytochrome P-450 CYP3A ; metabolism ; Gene Expression ; drug effects ; genetics ; Glucosides ; pharmacology ; Humans ; Male ; Plant Extracts ; chemistry ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Steroid ; metabolism ; Resorcinols ; pharmacology ; Rubiaceae ; chemistry
8.Screening of pregnane X receptor activation from ginsenosides.
Yu-Guang WANG ; Hao-Sheng LIU ; Xian-Xie ZHANG ; Yong XIAO ; Bei-Bei LU ; Zeng-Chun MA ; Qian-De LIANG ; Xiang-Lin TANG ; Cheng-Rong XIAO ; Hong-Ling TAN ; Bo-Li ZHANG ; Yue GAO
Acta Pharmaceutica Sinica 2013;48(1):144-148
In order to study effects of ginseng on the metabolism of drug belong to CYP3A4 substrate, screening of pregnane X receptor activation from ginsenosides was performed by reporter assay. Based on PXR-CYP3A stable translation cell lines, 13 ginsenosides were screened for pregnane X receptor activation by reporter assays, and RIF as the positive control. The effect of ginsenosides Rg1 onCYP3A4 mRNA expression was also investigated by RT-PCR. The PXR-CYP3A stable translation cell lines had good response to RIF, and the EC50 is 2.51 micro mol x L(-1). When the condition of final concentration was 10 micromol x L(-1), ginsenoside F2 and protopanaxatriol had moderate inductive effects on PXR. Panaxotriol, Rg2, pseudoginsenoside F11, Rg1, ginsenoside and Rb3 had inhibitory effects on PXR. Ginsenoside Rf1, Rg3, Rh2 and protopanaxdiol had no obvious effects on PXR. Rg1 down-regulated CYP3A4 mRNA expression in a concentration-dependent manner. Activation of pregnane X receptor by ginsenosides may influence the metabolism of drug belong to CYP3A4 substrate, and cause ginseng-drug interactions.
Cytochrome P-450 CYP3A
;
genetics
;
metabolism
;
Drug Interactions
;
Ginsenosides
;
pharmacology
;
Hep G2 Cells
;
Humans
;
RNA, Messenger
;
metabolism
;
Receptors, Steroid
;
agonists
;
antagonists & inhibitors
;
genetics
;
Sapogenins
;
pharmacology
;
Transfection
9.Establishment of in vitro evaluation model for CYP2B6 induction and its application to screen inducers among TCMs.
Cong XU ; Si-Yun XU ; Hai-Hong HU ; Lu-Shan YU ; Su ZENG
Acta Pharmaceutica Sinica 2013;48(1):119-124
This paper is to report the development of a high-throughput in vitro system to screen hPXR/CAR mediated CYP2B6 drug inducers, and the application of it into the quick determination of induction activity toward CYP2B6 by various commonly used traditional Chinese medicines (TCMs) extract. Dual reporter gene assays were performed. The hPXR/CAR expression vectors and the reporter vector pGL3-CYP2B6-Luc involved in the distal and proximal promoters of CYP2B6 were co-transfected into HepG2 cells. Relative luciferase activities in cell lysate were analyzed after 48 h treatment of blank vehicle or drugs to determine the induction activity toward CYP2B6 by various commonly used TCMs extract. The positive hPXR/hCAR activators rifampicin and CITCO were applied to make sure that the reporter gene model was successfully established. Then 5 kinds of commonly used TCM extracts and 1 herbal compound were successfully investigated, some were found to activate hPXR or hCAR and therefore have the potential to induce CYP2B6 enzyme. This is the first domestic article to report the hCAR3-mediated CYP2B6 induction model and the establishment of a reporter gene system for hPXR/CAR-mediated CYP2B6 induction can be an effective and systemic in vitro method to investigate the drug inducers of CYP2B6 and to explain the mechanism involved.
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2B6
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Genes, Reporter
;
Genetic Vectors
;
Hep G2 Cells
;
High-Throughput Screening Assays
;
Humans
;
Luciferases
;
genetics
;
metabolism
;
Oximes
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Plasmids
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
Receptors, Steroid
;
genetics
;
metabolism
;
Rifampin
;
pharmacology
;
Thiazoles
;
pharmacology
;
Transfection
10.Reversing effects of silybin on TAA-induced hepatic CYP3A dysfunction through PXR regulation.
Yuan XIE ; Hai-Ping HAO ; Hong WANG ; Zhao-Xian WANG ; Guang-Ji WANG
Chinese Journal of Natural Medicines (English Ed.) 2013;11(6):645-652
AIM:
Silybin (SB), a major constituent of the milk thistle, has been used to treat several liver disorders. However, liver diseases were always accompanied by CYP450 dysfunction. This study was designed to explore the relationship between the hepatoprotective effect and CYP3A regulation of SB during thioacetamide (TAA)-induced rat liver injury.
METHODS:
Serum biochemical analysis and histopathological study were taken to evaluate the hepatoprotectinve effect of SB. α-SMA were detected by immunohistochemical analysis and cytokine release in rat liver was determined by ELISA assay. CYP3A and PXR expression were determined by RT-PCR and Western blot analysis, and CYP3A activity was based on the midazolam 4-hydroxylation reaction. Also, siRNA transfection was induced in HepG2 cells to evaluate the effect of PXR on cytotoxicity and CYP3A4 dysregulation caused by TAA.
RESULTS:
SB showed powerful hepatoprotective effects, and anti-inflammatory and anti-fibrosis effects, and reversed the loss of CYP3A and PXR in TAA-injured rat liver, and decreased PXR translocation into the cell nucleus. PXR silencing weakened the effect of SB on cytoprotection and CYP3A regulation.
CONCLUSIONS
PXR was a very important factor of CYP3A regulation and might be the target of SB in TAA-induced liver disease. Also, because of the potential interactions of SB and co-administered medicines, it might be necessary to adjust the dosage in the clinical medication of liver disease.
Animals
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
enzymology
;
Cytochrome P-450 CYP3A
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Liver
;
drug effects
;
enzymology
;
metabolism
;
Male
;
Milk Thistle
;
chemistry
;
Pregnane X Receptor
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Steroid
;
genetics
;
metabolism
;
Signal Transduction
;
drug effects
;
Silybin
;
Silymarin
;
administration & dosage
;
Thioacetamide
;
adverse effects

Result Analysis
Print
Save
E-mail