1.Mechanism of the Notch signaling pathway in enhancing the efficacy of chemotherapy drugs in osteosarcoma.
Journal of Central South University(Medical Sciences) 2020;45(10):1234-1240
		                        		
		                        			
		                        			Osteosarcoma is the most common malignant tumors of bone. Since 1970s, researchers had used chemotherapy drugs to treat osteosarcoma. However, multidrug resistance is a major adverse reaction that affects the efficacy of chemotherapy drugs, leading to the reduced survival rate of osteosarcoma patients. The Notch signaling pathway plays an important role in osteosarcoma proliferation, which affects tumor resistance by reducing intracellular drug accumulation, regulating epithelial-mesenchymal transition, dysregulating microRNA, disrupting the expression of apoptosis genes, and regulating tumor stem cells.
		                        		
		                        		
		                        		
		                        			Bone Neoplasms/drug therapy*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Osteosarcoma/drug therapy*
		                        			;
		                        		
		                        			Pharmaceutical Preparations
		                        			;
		                        		
		                        			Receptors, Notch/genetics*
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
2.Effect of Acupuncture on the Notch Signaling Pathway in Rats with Brain Injury.
Yi-Min ZHANG ; Sheng-Xin CHEN ; Qiu-Fu DAI ; Shu-Ting JIANG ; Ai-Lian CHEN ; Chun-Zhi TANG ; Yu-Qing ZHANG
Chinese journal of integrative medicine 2018;24(7):537-544
OBJECTIVETo observe the effect of acupuncture on the Notch signaling pathway in rats with traumatic brain injury and to explore the pathogenesis of acupuncture intervention on traumatic brain injury.
METHODSFeeney's freefall epidural impact method was used to establish a traumatic brain injury model in rats; the rats were randomly divided into a normal group, sham operation group, model group and acupuncture group. Acupuncture was performed in the Baihui (DU 20), Shuigou (DU 26), Fengfu (DU 16), Yamen (DU 15) and Hegu (LI 4) acupoints in the rat, and Yamen was punctured via Fengfu. Then, the rats in each group were randomly divided into three subgroups, namely the day 3 subgroup, day 7 subgroup and day 14 subgroup according to treatment duration. The modified neurological severity scores (mNss) method was used to perform neurobehavioral scoring for evaluating the degree of injury in the rats. The hematoxylin-eosin (HE) staining method was used to observe the pathological change in the brain tissue of rats in each group. Real-time fluorescent quantitative polymerase chain reaction (Q-PCR) technology was used to detect changes in the Notch1, Hes1 and Hes5 gene expression levels in the cortex on the injured side. Western blot was used to detect the protein expression changes.
RESULTSOne day after modeling, the mNss scores in the model group and in the acupuncture group were significantly higher than those in the normal and sham operation groups (P<0.01) ; there was no statistically significant difference between the normal group and the sham operation group. The scores decreased with increased treatment time, and the scores in the acupuncture group decreased more significantly than those in the model group (P<0.01). The pathological examination by the HE staining method demonstrated that the brain tissue of the rats in the acupuncture and model groups relatively significantly changed. The Notch1 gene expression level in the acupuncture group was significantly higher than the level in all of the other groups (P<0.01) ; the Hes1 and Hes5 gene expression levels were also higher in the acupuncture group. The expression changes of the Notch1 and Hes1 protein were consistent with that of mRNA. In each experimental group, the mNss score and the pathological results by the HE staining method were consistent with the mRNA results.
CONCLUSIONAcupuncture could significantly promote high expression levels of Notch1, Hes1 and Hes5 in the brain tissue of traumatic brain injury rats. Therefore, acupuncture might be an important intervention for inducing endogenous stem cell proliferation and for promoting nerve repair.
Acupuncture Points ; Acupuncture Therapy ; Animals ; Brain Injuries ; genetics ; pathology ; therapy ; Brain Ischemia ; pathology ; therapy ; Male ; Nerve Regeneration ; genetics ; Rats ; Rats, Sprague-Dawley ; Receptors, Notch ; genetics ; metabolism ; Reperfusion Injury ; genetics ; therapy ; Signal Transduction ; genetics
3.Study of a CADASIL family with migraine as the presenting symptom.
Xiaoxia HOU ; Hong CHENG ; Qingwen JIN ; Qi NIU ; Feifei SHEN ; Juan YAO ; Xinsheng DING
Chinese Journal of Medical Genetics 2016;33(4):511-514
OBJECTIVETo analyze the clinical features and genetic cause for a family affected with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).
METHODSClinical manifestations, neuroimaging, and genetic analysis were performed.
RESULTSThe main clinical features have included stroke, emotional disturbance and history of migraine without progressive memory impairment. A positive family history was confirmed. Cranial MRI has revealed multi-infarct lesions and white matter hyperintensity involving bilateral basal ganglia, subcortex and brain stem. All such features were in keeping with the diagnosis of CADASIL. A rare 2182C>T mutation in exon 14 of the NOTCH3 gene was identified in all available cases.
CONCLUSIONBoth clinical and molecular features suggested that the family has been affected with CADASIL.
Adult ; Aged ; Female ; Humans ; Male ; Middle Aged ; Migraine Disorders ; genetics ; Receptor, Notch3 ; Receptors, Notch ; genetics
4.Effect of Kruppel-like factor 4 on Notch pathway in hepatic stellate cells.
Yin-Kai XUE ; Jun TAN ; Dong-Wei DOU ; Ding CHEN ; Lu-Jia CHEN ; Huan-Ping REN ; Li-Bo CHEN ; Xin-Gao XIONG ; Hai ZHENG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(6):811-816
		                        		
		                        			
		                        			The relationship between Kruppel-like factor 4 (KLF4) and the Notch pathway was determined to investigate the effect of KLF4 on the activation of hepatic stellate cells and underlying mechanisms. Fifty SPF BALB/c mice were randomly divided into two groups. A liver fibrosis model was established in 25 mice as the experimental group, and the remaining 25 mice served as controls. On the day 0, 7, 14, and 35, liver tissues were removed for immunofluorescent detection. The Notch pathway inhibitor DAPT was added to the primary original hepatic stellate cells, and KLF4 and Notch-associated factor expression was detected by qRT-PCR. Additionally, the hepatic stellate cell line LX-2 was used to establish control and experimental groups, and was cultured in vitro. LX-2 cells in the experimental groups were treated with DAPT and the Notch activator transforming growth factor-beta 1 separately, whereas those in the control group were given isotonic culture medium. After 48 h, KLF4 expression was examined by Western blotting. After transient transfection of LX-2 cells to increase KLF4, the expression of Notch factor was examined. Immunofluorescence analysis showed that, with the aggravation of liver fibrosis, the absorbance (A) values of KLF4 were decreased (day 0: 980.73±153.19; day 7: 1087.99±230.23; day 14: 390.95±93.56; day 35: 245.99±87.34). The expression of Notch pathway- related factors (Notch-1, Notch-2, and Jagged-1) in the hepatic stellate cell membrane was negatively correlated to KLF4 expression. With the increase of KLF4 expression, Notch-2 (0.73±0.13) and Jagged-1 (0.43±0.12) expression decreased, whereas Notch-1 level was not detectable. When the Notch pathway was inhibited, KLF4 levels generally increased (18.12±1.31). Our results indicate that KLF4 expression is negatively correlated to the Notch pathway in hepatic stellate cells, which may provide a reference for the treatment of hepatic fibrosis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Hepatic Stellate Cells
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Kruppel-Like Transcription Factors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Liver Cirrhosis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Receptors, Notch
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Transforming Growth Factor beta1
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
5.Notch signaling in bone formation and related skeletal diseases.
Hongwei MA ; Yaqiong WU ; Haifeng ZHANG
Chinese Journal of Medical Genetics 2015;32(2):274-279
		                        		
		                        			
		                        			Notch signaling is highly conserved in evolution and regarded as a key factor in cell fate determination. It mediates cell-to-cell interactions that are critical for embryonic development and tissue renewal, and is involved in the occurrence and metastasis of neoplasm. Recent researches have found that such signaling plays an important role in modulating the differentiation of chondrocytes, osteoblasts and osteoclasts. Dysfunction of Notch signaling can result in many skeletal diseases such as bone tumor, disorders of bone development or bone metabolism.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Development
		                        			;
		                        		
		                        			Bone Diseases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Bone and Bones
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Osteoblasts
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			Receptors, Notch
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
6.Effect of curcumin on aged Drosophila melanogaster: a pathway prediction analysis.
Zhi-guo ZHANG ; Xu-yan NIU ; Ai-ping LU ; Gary Guishan XIAO
Chinese journal of integrative medicine 2015;21(2):115-122
OBJECTIVETo re-analyze the data published in order to explore plausible biological pathways that can be used to explain the anti-aging effect of curcumin.
METHODSMicroarray data generated from other study aiming to investigate effect of curcumin on extending lifespan of Drosophila melanogaster were further used for pathway prediction analysis. The differentially expressed genes were identified by using GeneSpring GX with a criterion of 3.0-fold change. Two Cytoscape plugins including BisoGenet and molecular complex detection (MCODE) were used to establish the protein-protein interaction (PPI) network based upon differential genes in order to detect highly connected regions. The function annotation clustering tool of Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for pathway analysis.
RESULTSA total of 87 genes expressed differentially in D. melanogaster melanogaster treated with curcumin were identified, among which 50 were up-regulated significantly and 37 were remarkably down-regulated in D. melanogaster melanogaster treated with curcumin. Based upon these differential genes, PPI network was constructed with 1,082 nodes and 2,412 edges. Five highly connected regions in PPI networks were detected by MCODE algorithm, suggesting anti-aging effect of curcumin may be underlined through five different pathways including Notch signaling pathway, basal transcription factors, cell cycle regulation, ribosome, Wnt signaling pathway, and p53 pathway.
CONCLUSIONGenes and their associated pathways in D. melanogaster melanogaster treated with anti-aging agent curcumin were identified using PPI network and MCODE algorithm, suggesting that curcumin may be developed as an alternative therapeutic medicine for treating aging-associated diseases.
Aging ; drug effects ; genetics ; Animals ; Cell Cycle ; drug effects ; genetics ; Curcumin ; pharmacology ; Drosophila Proteins ; genetics ; metabolism ; Drosophila melanogaster ; drug effects ; genetics ; Gene Expression Regulation ; drug effects ; Gene Regulatory Networks ; drug effects ; Genes, Insect ; Protein Biosynthesis ; drug effects ; genetics ; Protein Interaction Maps ; drug effects ; genetics ; Receptors, Notch ; genetics ; metabolism ; Ribosomes ; drug effects ; metabolism ; Signal Transduction ; drug effects ; genetics ; Tumor Suppressor Protein p53 ; metabolism ; Wnt Signaling Pathway ; drug effects ; genetics
7.Identification of a novel NOTCH3 mutation in a family featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy.
Yuyou ZHU ; Juan WANG ; Yuanbo WU ; Guoping WANG ; Bai HU ; Ao XU
Chinese Journal of Medical Genetics 2014;31(5):578-581
OBJECTIVETo analyze potential mutations of NOTCH3 gene in a Chinese family featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy (CADASIL) in order to facilitate genetic counseling and prenatal diagnosis.
METHODSThe proband and related family members and 100 healthy controls were recruited. The NOTCH3 gene was screened for mutations by polymerase chain reaction and direct DNA sequencing. PolyPhen-2 and SIFT software were used to predict the protein function.
RESULTSThe proband and two affected individuals from the family were adult-onset, with main clinical manifestations including recurrent transient ischemic attacks and(or) strokes, cognitive impairment, memory decline, and depression. MRI findings suggested multiple cerebral infarcts and severe leukoencephalopathy. A novel heterozygous missense mutation c.3043T> A (p.Cys1015Ser) located in exon 19 of NOTCH3 gene was identified not only in the proband and two patients, but also in an asymptomatic relative from the family. The same mutation was detected in none of the 100 unrelated healthy controls. Function analysis suggested that this mutation can severely affect the functions of this protein. Multiple sequence alignment revealed that the mutation site was extremely conserved in various species.
CONCLUSIONA novel heterozygous Cys1015Ser mutations in exon 19 of the NOTCH3 gene probably underlies the CADASIL in this family.
Adult ; Aged ; Amino Acid Sequence ; Base Sequence ; CADASIL ; complications ; genetics ; DNA Mutational Analysis ; Exons ; genetics ; Family Health ; Female ; Heterozygote ; Humans ; Male ; Middle Aged ; Molecular Sequence Data ; Mutation, Missense ; Pedigree ; Polymerase Chain Reaction ; Receptor, Notch3 ; Receptors, Notch ; genetics ; Sequence Homology, Amino Acid
8.Effect of notch signaling pathway on VEGF promoting rat mesenchymal stem cell proliferation.
Feng-Ling LIAO ; Ri-Ling CHEN ; Shan JIANG ; Chuan TIAN
Journal of Experimental Hematology 2014;22(4):1068-1071
		                        		
		                        			
		                        			This study was purposed to investigate the effect of Notch signaling pathway on VEGF promoting the proliferation of rat mesenchymal stem cells (MSC). Rat MSC were cultured in vitro, and the cells in logarithmic growth phase were used for experiments. The inhibitor DAPT was used to block Notch signaling pathway, and the effect of the pathway on VEGF promoting proliferation of MSC was observed. The experiment was divided into 4 groups: control, VEGF, DAPT and VEGF+DAPT. The CCK-8 was used to assay the cells proliferation of each group, while RT-PCR was used to detect the changes of related genes (Notch1, Notch2, Flk-1, Hes-1) at mRNA levels. The results indicated that the cells survival rate MSC in DAPT group and VEGF+DAPT group was low in each time point (24 h, 48 h, 72 h), the cell number decreased, and the cells became rounded. The survival rate of MSC in VEGF group was the highest; the difference of cell survival rate was statistically significant between the groups (P < 0.01); Compared with the control group, the mRNA expression level of Notch1, Notch2 and Flk-1 in VEGF group was raised, while the expression level of Notch1 and Notch2 in DAPT group and VEGF+DAPT group come down, with statistically significant differences (P < 0.05); whereas the mRNA expression level of Hes-1 in VEGF group was down-regulated, but that in DAPT group and VEGF+DAPT group was up-regulated, and the difference was statistically significant (P < 0.05). Flk-1 mRNA level in DAPT group and VEGF+DAPT group was slightly lower, but the difference was not statistically significant (P > 0.05). It is concluded that Notch signaling pathway plays an important role in promoting the proliferation of rat MSC, treated with VEGF, however, the DAPT can weaken this effect.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Mesenchymal Stromal Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Receptors, Notch
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
9.Function and mechanism of tumor suppressor gene FBW7 in tumorigenesis.
Hui-jie HUANG ; Fang ZHENG ; Fang-ping XU ; Yan-hui LIU ; Heng-guo ZHUANG
Chinese Journal of Pathology 2013;42(3):214-216
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Carcinogenesis
		                        			;
		                        		
		                        			Cell Cycle Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cyclin E
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			F-Box Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			F-Box-WD Repeat-Containing Protein 7
		                        			;
		                        		
		                        			Gene Silencing
		                        			;
		                        		
		                        			Genes, Tumor Suppressor
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Myeloid Cell Leukemia Sequence 1 Protein
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-myc
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptors, Notch
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Ubiquitin-Protein Ligases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
10.Effect of Notch signaling on the activation of hepatic stellate cells.
Yi-xiong CHEN ; Zhi-hong WENG ; Dan QI ; Shu-ling ZHANG
Chinese Journal of Hepatology 2012;20(9):677-682
OBJECTIVETo investigate whether Notch signaling is activated in hepatic stellate cells (HSCs), and to determine whether manipulation of the Notch signaling pathway can effect the activation of HSCs.
METHODSThe expression of Notch signaling components in unactivated or TGF-b1-activated HSC-T6 cells was detected by Taqman Probe-based gene expression analysis. Differential expression of Notch3 and Jagged1 was detected by immunofluorescence analysis. Notch3-mediated expression of the myofibroblastic markers, a-SMA and collagen I, was detected in HSC-T6 cells transfected with pcDNA3.1-N3ICD or Notch3 siRNA by Western blotting.
RESULTSNotch signaling components were expressed in both unactivated and activated HSC-T6 cells, but the TGF-b1-treated cells showed significantly higher expression levels of Jagged1 (3.9-fold, F = 2543.482), Notch3 (4.2-fold, F = 287.982), and HES1 (3.2-fold, F = 1719.851). Transfection-mediated over-expression of Notch3 led to significantly increased expression of a-SMA (6.8-fold, t = 13.157) and collagen I (5.5-fold, t = 9.810) (both P less than 0.01). Transient knock-down of Notch3 expression by siRNA decreased expression of the myofibroblastic markers (a-SMA by approximately 90%, t = 19.863 and collagen I by 84%, t = 10.376; both, P less than 0.01). Moreover, knock-down of Notch3 antagonized the TGF-b1-induced expression of a-SMA and collagen I.
CONCLUSIONNotch signaling may participate in liver fibrogenesis by regulating HSC activation. Selective interruption of Notch3 may represent a new anti-fibrotic strategy to treat liver fibrosis.
Animals ; Calcium-Binding Proteins ; genetics ; metabolism ; Cell Line ; Hepatic Stellate Cells ; metabolism ; Intercellular Signaling Peptides and Proteins ; genetics ; metabolism ; Jagged-1 Protein ; Membrane Proteins ; genetics ; metabolism ; RNA, Messenger ; genetics ; RNA, Small Interfering ; Rats ; Receptor, Notch3 ; Receptors, Notch ; genetics ; metabolism ; Serrate-Jagged Proteins ; Signal Transduction
            
Result Analysis
Print
Save
E-mail