1.Glutamate and its ionotropic receptor agonists inhibit the response to acute hypoxia in carotid body of rats.
Acta Physiologica Sinica 2023;75(4):537-543
The purpose of this study was to investigate the effect of glutamate and its ionotropic receptor agonists on the response to acute hypoxia in rat carotid body in vitro. Briefly, after SD rats were anesthetized and decapitated, the bilateral carotid bifurcations were rapidly isolated. Then bifurcation was placed into a recording chamber perfused with 95% O2-5% CO2 saturated Kreb's solution. The carotid body-sinus nerve complex was dissected, and the carotid sinus nerve discharge was recorded using a suction electrode. To detect the response of carotid body to acute hypoxia, the chamber was perfused with 5% O2-5% CO2-90% N2 saturated Kreb's solution for a period of 100 s at an interval of 15 min. To observe the effect of glutamate, ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor agonist AMPA or N-methyl-D-aspartate (NMDA) receptor agonist NMDA on the response to acute hypoxia in rat carotid body, the chamber was perfused with 5% O2-5% CO2-90% N2 saturated Kreb's solution containing the corresponding reagent. The results showed that glutamate (20 μmol/L), AMPA (5 μmol/L) or NMDA (10 μmol/L) inhibited the acute hypoxia-induced enhancement of carotid sinus nerve activity, and these inhibitory effects were dose-dependent. In summary, the activation of glutamate ionotropic receptors appears to exert an inhibitory effect on the response to acute hypoxia in carotid body of rats.
Rats
;
Animals
;
Glutamic Acid/pharmacology*
;
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology*
;
N-Methylaspartate/pharmacology*
;
Carotid Body
;
Rats, Sprague-Dawley
;
Carbon Dioxide
;
Receptors, N-Methyl-D-Aspartate
;
Receptors, AMPA
;
Hypoxia
2.Effect of Suanzaoren Decoction on expression of ionotropic glutamate receptors and synaptic plasticity in hippocampus of anxiety rats.
Hong-Kun WANG ; Jin-Ming HE ; Yue-Heng YAN ; Zi-Hao WANG ; Ruo-Xuan LI ; Yan-Yan WANG
China Journal of Chinese Materia Medica 2023;48(20):5583-5591
This study investigated the effect of Suanzaoren Decoction on the expression of N-methyl-D-aspartate receptors(NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors(AMPAR) in the hippocampus and synaptic plasticity in rats with conditioned fear-induced anxiety. The effect of Suanzaoren Decoction on rat behaviors were evaluated through open field experiment, elevated plus maze experiment, and light/dark box experiment. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of glutamate(Glu) and γ-aminobutyric acid(GABA) in the rat hippocampus. Real-time fluorescence quantitative PCR(qRT-PCR) and Western blot were employed to assess the gene and protein expression of ionotropic glutamate receptors in the hippocampal region. Transmission electron microscopy was utilized to observe the changes in the ultrastructure of synaptic neurons in the hippocampal region. Long-term potentiation(LTP) detection technique was employed to record the changes in population spike(PS) amplitude in the hippocampal region of mice in each group. The behavioral results showed that compared with the model group, the Suanzaoren Decoction group effectively increased the number of entries into open arms, time spent in open arms, percentage of time spent in open arms out of total movement time, number of entries into open arms out of total entries into both arms(P<0.01), and significantly increased the time spent in the light box and the number of shuttle crossings(P<0.01). There was an increasing trend in the number of grid crossings, entries into the center grid, and time spent in the center grid, indicating a significant anxiolytic effect. ELISA results showed that compared with the model group, the Suanzaoren Decoction group exhibited significantly reduced levels of Glu, Glu/GABA ratio(P<0.01), and significantly increased levels of GABA(P<0.01) in the rat hippocampus. Furthermore, Suanzaoren Decoction significantly decreased the gene and protein expression of NMDAR(GluN2B and GluN2A) and AMPAR(GluA1 and GluA2) compared with the model group. Transmission electron microscopy results demonstrated improvements in synapses, neuronal cells, and organelles in the hippocampal region of the Suanzaoren Decoction group compared with the model group. LTP detection results showed a significant increase in the PS amplitude changes in the hippocampal region of Suanzaoren Decoction group from 5 to 35 min compared with the model group(P<0.05, P<0.01). In conclusion, Suanzaoren Decoction exhibits significant anxiolytic effects, which may be attributed to the reduction in NMDAR and AMPAR expression levels and the improvement of synaptic plasticity.
Rats
;
Mice
;
Animals
;
Receptors, Ionotropic Glutamate/metabolism*
;
Hippocampus
;
Neuronal Plasticity
;
Receptors, N-Methyl-D-Aspartate/genetics*
;
Anxiety/genetics*
;
gamma-Aminobutyric Acid
3.Disrupted Maturation of Prefrontal Layer 5 Neuronal Circuits in an Alzheimer's Mouse Model of Amyloid Deposition.
Chang CHEN ; Jing WEI ; Xiaokuang MA ; Baomei XIA ; Neha SHAKIR ; Jessica K ZHANG ; Le ZHANG ; Yuehua CUI ; Deveroux FERGUSON ; Shenfeng QIU ; Feng BAI
Neuroscience Bulletin 2023;39(6):881-892
Mutations in genes encoding amyloid precursor protein (APP) and presenilins (PSs) cause familial forms of Alzheimer's disease (AD), a neurodegenerative disorder strongly associated with aging. It is currently unknown whether and how AD risks affect early brain development, and to what extent subtle synaptic pathology may occur prior to overt hallmark AD pathology. Transgenic mutant APP/PS1 over-expression mouse lines are key tools for studying the molecular mechanisms of AD pathogenesis. Among these lines, the 5XFAD mice rapidly develop key features of AD pathology and have proven utility in studying amyloid plaque formation and amyloid β (Aβ)-induced neurodegeneration. We reasoned that transgenic mutant APP/PS1 over-expression in 5XFAD mice may lead to neurodevelopmental defects in early cortical neurons, and performed detailed synaptic physiological characterization of layer 5 (L5) neurons from the prefrontal cortex (PFC) of 5XFAD and wild-type littermate controls. L5 PFC neurons from 5XFAD mice show early APP/Aβ immunolabeling. Whole-cell patch-clamp recording at an early post-weaning age (P22-30) revealed functional impairments; although 5XFAD PFC-L5 neurons exhibited similar membrane properties, they were intrinsically less excitable. In addition, these neurons received smaller amplitude and frequency of miniature excitatory synaptic inputs. These functional disturbances were further corroborated by decreased dendritic spine density and spine head volumes that indicated impaired synapse maturation. Slice biotinylation followed by Western blot analysis of PFC-L5 tissue revealed that 5XFAD mice showed reduced synaptic AMPA receptor subunit GluA1 and decreased synaptic NMDA receptor subunit GluN2A. Consistent with this, patch-clamp recording of the evoked L23>L5 synaptic responses revealed a reduced AMPA/NMDA receptor current ratio, and an increased level of AMPAR-lacking silent synapses. These results suggest that transgenic mutant forms of APP/PS1 overexpression in 5XFAD mice leads to early developmental defects of cortical circuits, which could contribute to the age-dependent synaptic pathology and neurodegeneration later in life.
Mice
;
Animals
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Mice, Transgenic
;
Neurons/metabolism*
;
Receptors, AMPA/metabolism*
;
Disease Models, Animal
5.KIF17 Modulates Epileptic Seizures and Membrane Expression of the NMDA Receptor Subunit NR2B.
Yan LIU ; Xin TIAN ; Pingyang KE ; Juan GU ; Yuanlin MA ; Yi GUO ; Xin XU ; Yuanyuan CHEN ; Min YANG ; Xuefeng WANG ; Fei XIAO
Neuroscience Bulletin 2022;38(8):841-856
Epilepsy is a common and severe brain disease affecting >65 million people worldwide. Recent studies have shown that kinesin superfamily motor protein 17 (KIF17) is expressed in neurons and is involved in regulating the dendrite-targeted transport of N-methyl-D-aspartate receptor subtype 2B (NR2B). However, the effect of KIF17 on epileptic seizures remains to be explored. We found that KIF17 was mainly expressed in neurons and that its expression was increased in epileptic brain tissue. In the kainic acid (KA)-induced epilepsy mouse model, KIF17 overexpression increased the severity of epileptic activity, whereas KIF17 knockdown had the opposite effect. In electrophysiological tests, KIF17 regulated excitatory synaptic transmission, potentially due to KIF17-mediated NR2B membrane expression. In addition, this report provides the first demonstration that KIF17 is modified by SUMOylation (SUMO, small ubiquitin-like modifier), which plays a vital role in the stabilization and maintenance of KIF17 in epilepsy.
Animals
;
Epilepsy/metabolism*
;
Kinesins/metabolism*
;
Mice
;
Neurons/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Seizures/metabolism*
6.Advances in N-methyl-D-aspartate Receptor Signaling Pathway and Mechanism of the Pathway-mediated Apoptosis.
Yi-Xiao HAN ; Ya-Zhu HOU ; Hai-Feng YAN ; Shuai WANG ; Xian-Liang WANG ; Jing-Yuan MAO
Acta Academiae Medicinae Sinicae 2022;44(1):149-157
N-methyl-D-aspartate receptor (NMDAR),an important ionic glutamate receptor and a ligand and voltage-gated ion channel characterized by complex composition and functions and wide distribution,plays a key role in the pathological and physiological process of diseases or stress states.NMDAR can mediate apoptosis through different pathways such as mitochondrial and endoplasmic reticulum damage,production of reactive oxygen species and peroxynitrite,and activation of mitogen-activated protein kinase and calpain.This paper reviews the structure,distribution,and biological characteristics of NMDAR and the mechanisms of NMDAR-mediated apoptosis.
Apoptosis
;
Humans
;
Mitogen-Activated Protein Kinases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Signal Transduction
7.Prostate-derived IL-1β upregulates expression of NMDA receptor in the paraventricular nucleus and shortens ejaculation latency in rats with experimental autoimmune prostatitis.
Jie YANG ; Jiao-Chen LUAN ; Jian-Huai CHEN ; Qi-Jie ZHANG ; Jian-Xin XUE ; Ya-Min WANG ; Guo-Qing ZHU ; Ning-Hong SONG ; Zeng-Jun WANG ; Jia-Dong XIA
Asian Journal of Andrology 2022;24(2):213-218
Experimental autoimmune prostatitis (EAP)-induced persistent inflammatory immune response can significantly upregulate the expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus (PVN). However, the mechanism has not yet been elucidated. Herein, we screened out the target prostate-derived inflammation cytokines (PDICs) by comparing the inflammatory cytokine levels in peripheral blood and cerebrospinal fluid (CSF) between EAP rats and their controls. After identifying the target PDIC, qualified males in initial copulatory behavior testing (CBT) were subjected to implanting tubes onto bilateral PVN. Next, they were randomly divided into four subgroups (EAP-1, EAP-2, Control-1, and Control-2). After 1-week recovery, EAP-1 rats were microinjected with the target PDIC inhibitor, Control-1 rats were microinjected with the target PDIC, while the EAP-2 and Control-2 subgroups were only treated with the same amount of artificial CSF (aCSF). Results showed that only interleukin-1β(IL-1β) had significantly increased mRNA-expression in the prostate of EAP rats compared to the controls (P < 0.001) and significantly higher protein concentrations in both the serum (P = 0.001) and CSF (P < 0.001) of the EAP groups compared to the Control groups. Therefore, IL-1β was identified as the target PDIC which crosses the blood-brain barrier, thereby influencing the central nervous system. Moreover, the EAP-1 subgroup displayed a gradually prolonged ejaculation latency (EL) in the last three CBTs (all P < 0.01) and a significantly lower expression of NMDA NR1 subunit in the PVN (P = 0.043) compared to the respective control groups after a 10-day central administration of IL-1β inhibitors. However, the Control-1 subgroup showed a gradually shortened EL (P < 0.01) and a significantly higher NR1 expression (P = 0.004) after homochronous IL-1β administration. Therefore, we identified IL-1β as the primary PDIC which shortens EL in EAP rats. However, further studies should be conducted to elucidate the specific molecular mechanisms through which IL-1β upregulates NMDA expression.
Animals
;
Cytokines/metabolism*
;
Disease Models, Animal
;
Ejaculation/physiology*
;
Interleukin-1beta/metabolism*
;
Male
;
N-Methylaspartate/metabolism*
;
Prostate/metabolism*
;
Prostatitis/metabolism*
;
Rats
;
Receptors, N-Methyl-D-Aspartate/metabolism*
8.Anterior Cingulate Cortex Mediates Hyperalgesia and Anxiety Induced by Chronic Pancreatitis in Rats.
Dan REN ; Jia-Ni LI ; Xin-Tong QIU ; Fa-Ping WAN ; Zhen-Yu WU ; Bo-Yuan FAN ; Ming-Ming ZHANG ; Tao CHEN ; Hui LI ; Yang BAI ; Yun-Qing LI
Neuroscience Bulletin 2022;38(4):342-358
Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.
Animals
;
Anxiety/etiology*
;
Chronic Pain/etiology*
;
GABAergic Neurons
;
Gyrus Cinguli/metabolism*
;
Hyperalgesia/metabolism*
;
Pancreatitis, Chronic/pathology*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Trinitrobenzenesulfonic Acid/toxicity*
9.A novel cell tool for α2δ-1-NMDAR target-based analgesic drug discovery.
Lin DONG ; Yiya ZHANG ; Jinjun CHEN
Chinese Journal of Biotechnology 2022;38(3):1149-1158
The α2δ-1 protein coded by Cacna2d1 is dramatically up-regulated in dorsal root ganglion (DRG) neurons and spinal dorsal horn following sensory nerve injury in various animal models of neuropathic pain. Cacna2d1 overexpression potentiates presynaptic and postsynaptic NMDAR activity of spinal dorsal horn neurons to cause pain hypersensitivity. The α2δ-1-NMDAR interaction promotes surface trafficking and synaptic targeting of NMDARs in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury, as well as in other pathological conditions such as in the paraventricular nucleus (PVN) with neurogenic hypertension and in the brain with ischemic stroke. The lentiviral transfection method was used to construct a human embryonic kidney HEK293T cell line that could stably express α2δ-1-NMDAR complex. A stably transfected cell line was observed by florescence microscope, and identified by RT-qPCR and Western blotting. The results showed that the HEK293T cell line was successfully transfected and the genes could be stably expressed. Subsequently, the transfected cell line was successfully developed into a target drug screening system using patch clamp techniques. It provides a promising cell model for further research on the interaction mechanism of α2δ-1-NMDAR complex and drug screening for chronic pain and related diseases with low side effects.
Analgesics/therapeutic use*
;
Animals
;
Drug Discovery
;
HEK293 Cells
;
Humans
;
Neuralgia/metabolism*
;
Receptors, N-Methyl-D-Aspartate/genetics*
10.Involvement of retinoic acid receptor α in the autistic-like behavior of rats with vitamin A deficiency by regulating neurexin 1 in the visual cortex: a mechanism study.
Li-Sha LI ; Qian ZHANG ; Huan LIU ; Qiong-Hui WU ; Ting YANG ; Jie CHEN ; Ting-Yu LI
Chinese Journal of Contemporary Pediatrics 2022;24(8):928-935
OBJECTIVES:
To study the mechanism of retinoic acid receptor α (RARα) signal change to regulate neurexin 1 (NRXN1) in the visual cortex and participate in the autistic-like behavior in rats with vitamin A deficiency (VAD).
METHODS:
The models of vitamin A normal (VAN) and VAD pregnant rats were established, and some VAD maternal and offspring rats were given vitamin A supplement (VAS) in the early postnatal period. Behavioral tests were performed on 20 offspring rats in each group at the age of 6 weeks. The three-chamber test and the open-field test were used to observe social behavior and repetitive stereotyped behavior. High-performance liquid chromatography was used to measure the serum level of retinol in the offspring rats in each group. Electrophysiological experiments were used to measure the long-term potentiation (LTP) level of the visual cortex in the offspring rats. Quantitative real-time PCR and Western blot were used to measure the expression levels of RARα, NRXN1, and N-methyl-D-aspartate receptor 1 (NMDAR1). Chromatin co-immunoprecipitation was used to measure the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene.
RESULTS:
The offspring rats in the VAD group had autistic-like behaviors such as impaired social interactions and repetitive stereotypical behaviors, and VAS started immediately after birth improved most of the behavioral deficits in offspring rats. The offspring rats in the VAD group had a significantly lower serum level of retinol than those in the VAN and VAS groups (P<0.05). Compared with the offspring rats in the VAN and VAS groups, the offspring rats in the VAD group had significant reductions in the mRNA and protein expression levels of NMDAR1, RARα, and NRXN1 and the LTP level of the visual cortex (P<0.05). The offspring rats in the VAD group had a significant reduction in the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene in the visual cortex compared with those in the VAN and VAS groups (P<0.05).
CONCLUSIONS
RARα affects the synaptic plasticity of the visual cortex in VAD rats by regulating NRXN1, thereby participating in the formation of autistic-like behaviors in VAD rats.
Animals
;
Autistic Disorder
;
Female
;
Pregnancy
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate
;
Retinoic Acid Receptor alpha
;
Visual Cortex
;
Vitamin A
;
Vitamin A Deficiency

Result Analysis
Print
Save
E-mail