1.Genetic analysis of a patient with familial hypercholesterolemia due to variant of LDLR gene.
Guanxiong WANG ; Liting LIU ; Yang GAO ; Mingrong LYU ; Huan WU ; Xiaojin HE
Chinese Journal of Medical Genetics 2023;40(4):458-461
OBJECTIVE:
To analyze variant of LDLR gene in a patient with familial hypercholesterolemia (FH) in order to provide a basis for the clinical diagnosis and genetic counseling.
METHODS:
A patient who had visited the Reproductive Medicine Center of the First Affiliated Hospital of Anhui Medical University in June 2020 was selected as the study subject. Clinical data of the patient was collected. Whole exome sequencing (WES) was applied to the patient. Candidate variant was verified by Sanger sequencing. Conservation of the variant site was analyzed by searching the UCSC database.
RESULTS:
The total cholesterol level of the patient was increased, especially low density lipoprotein cholesterol. A heterozygous c.2344A>T (p.Lys782*) variant was detected in the LDLR gene. Sanger sequencing confirmed that the variant was inherited from the father.
CONCLUSION
The heterozygous c.2344A>T (p.Lys782*) variant of the LDLR gene probably underlay the FH in this patient. Above finding has provided a basis for genetic counseling and prenatal diagnosis for this family.
Humans
;
Cholesterol, LDL/genetics*
;
Heterozygote
;
Hyperlipoproteinemia Type II/genetics*
;
Mutation
;
Pedigree
;
Phenotype
;
Receptors, LDL/genetics*
2.Molecular mechanism of astragaloside Ⅳ against atherosclerosis by regulating miR-17-5p and PCSK9/VLDLR signal pathway.
He-Wei QIN ; Qin-Sheng ZHANG ; Yan-Jie LI ; Wen-Tao LI ; Yuan WANG
China Journal of Chinese Materia Medica 2022;47(2):492-498
This study explores the regulatory effect of astragaloside Ⅳ on miR-17-5 p and its downstream proprotein convertase subtillisin/kexin type 9(PCSK9)/very low density lipoprotein receptor(VLDLR) signal pathway, aiming at elucidating the mechanism of astragaloside Ⅳ against atherosclerosis(AS). In cell experiment, oxidized low-density lipoprotein(ox-LDL) was used for endothelial cell injury modeling with vascular smooth muscle cells(VSMCs). Then cells were classified into the model group, miR-17-5 p inhibitor group, blank serum group, and astragaloside Ⅳ-containing serum group based on the invention. Afterward, cell viability and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA and protein in cells in each group were detected. In animal experiment, 15 C57 BL/6 mice were used as the control group, and 45 ApoE~(-/-) mice were classified into the model group, miR-17-5 p inhibitor group, and astragaloside Ⅳ group, with 15 mice in each group. After 8 weeks of intervention, the peripheral serum levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α), and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA in the aorta of mice were detected. The pathological changes of mice in each group were observed. According to the cell experiment, VSMC viability in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was higher than that in the model group(P<0.05). The mRNA and protein expression of miR-17-5 p and VLDLR in VSMCs in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was lower than that in the model group(P<0.05), but the mRNA and protein expression of PCSK9 was higher than that in the model group(P<0.05). As for the animal experiment, the levels of IL-6 and TNF-α in the peripheral serum of the miR-17-5 p inhibitor group and the astragaloside Ⅳ group were lower(P<0.05) and the serum level of IL-10 was higher(P<0.05) than that of the model group. The mRNA expression of miR-17-5 p and VLDLR in the aorta in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group was lower(P<0.05), and PCSK9 mRNA expression was higher(P<0.05) than that in the model group. Pathological observation showed mild AS in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group. In summary, astragaloside Ⅳ can prevent the occurrence and development of AS. The mechanism is that it performs targeted regulation of miR-17-5 p, further affecting the PCSK9/VLDLR signal pathway, inhibiting vascular inflammation, and thus alleviating endothelial cell injury.
Animals
;
Atherosclerosis/genetics*
;
Lipoproteins, LDL/metabolism*
;
Mice
;
MicroRNAs/metabolism*
;
Proprotein Convertase 9/metabolism*
;
Receptors, LDL/metabolism*
;
Saponins
;
Signal Transduction
;
Triterpenes
4.Analysis of clinical phenotypes and variants of LDLR gene in two Chinese patients with familial hypercholesterolemia.
Kexin WANG ; Tao SUN ; Xiaoping ZHANG ; Yahui ZHANG ; Hai GAO ; Yanlong REN ; Xiaoyan LI
Chinese Journal of Medical Genetics 2022;39(12):1344-1348
OBJECTIVE:
To explore the correlation between clinical phenotypes and pathogenic variants in two patients with familial hypercholesterolemia.
METHODS:
Both patients were subjected to whole exome sequencing (WES) with a focus on the analysis of genes associated with dyslipidemia. Candidate variants were verified by Sanger sequencing of the patients and their family members.
RESULTS:
WES revealed that the proband 1 has harbored two heterozygous variants of the LDLR gene, namely c.1360G>A (p.D454N) and c.292G>A (p.G98S), whilst proband 2 has harbored a heterozygous c.321T>G (p.C107W) variant of the LDLR gene. Based on the guidelines from the American College of Medical Genetic and Genomics (ACMG), the above variants were respectively predicted to be likely pathogenic (PM1+PM2+PP2+PP3+PP4+PP5), variant of unknown significance (PM1+PP2+PP3), and likely pathogenic (PM1+PM2+PP2+PP4+PP5). Treatment with PCSK9 inhibitor has attained a significant effect in proband 1 but no apparent effect in proband 2.
CONCLUSION
Variants of the LDLR gene probably underlay the familial hypercholesterolemia in the two pedigrees. The difference in the severity of the clinical phenotypes and response to PCSK9 inhibitor treatment between the two probands may be attributed to the different genotypes of the LDLR gene. Genetic testing not only can provide a basis for clinical diagnosis, but also facilitate the choice of lipid-lowering drugs.
Humans
;
China
;
Hyperlipoproteinemia Type II/genetics*
;
Phenotype
;
Receptors, LDL/genetics*
5.Screening of LDLR gene mutations in nine patients with familial hypercholesterolemia.
Xiaolu MENG ; Nuo SI ; Yuqi SHEN ; Qi WANG ; Jiangchun HE ; Chaoxiao LU ; Wei WU ; Shuyang ZHANG ; Xue ZHANG
Chinese Journal of Medical Genetics 2018;35(6):783-786
OBJECTIVE:
To screen for LDLR gene mutations in 9 patients with familial hypercholesterolemia (FH).
METHODS:
All exons of the LDLR gene and flanking intronic sequences were amplified by PCR and subjected to automatic DNA sequencing. For patients with homozygous or compound heterozygous mutations, parental DNA sequencing or T cloning sequencing was carried out to determine the parental origin of the mutant alleles.
RESULTS:
Direct sequencing of PCR products revealed 8 LDLR variants in 7 patients, which included c.259T>G, c.513delC, c.530C>T, c.682G>T, c.763C>T, c.1187-10G>A, c.1948delG, and c.1730G>A, among which c.1948delG was novel. Four patients have carried heterozygous mutations, two carried homozygous mutations, and one carried compound heterozygous mutations. The patients with biallelic mutations presented with a more severe phenotype compared those carrying heterozygous mutations.
CONCLUSION
LDLR mutations were identified in 7 out of 9 patients with FH. Among the 8 identified LDLR mutations, c.1948delG was firstly reported. Above findings have expanded the mutation spectrum of LDLR gene.
DNA Mutational Analysis
;
Genetic Testing
;
Humans
;
Hyperlipoproteinemia Type II
;
genetics
;
Mutation
;
Phenotype
;
Receptors, LDL
;
genetics
6.Short- and long-term effects of xuezhikang, an extract of cholestin, on serum proprotein convertase subtilisin/kexin type 9 levels.
Yan-jun JIA ; Yan ZHANG ; Jun LIU ; Yuan-lin GUO ; Rui-xia XU ; Jian-jun LI
Chinese journal of integrative medicine 2016;22(2):96-100
OBJECTIVETo investigate the short- and long-term effects of Xuezhikang (XZK), an extract of cholestin, on proprotein convertase subtilisin/kexin type 9 (PCSK9) level.
METHODSThirty rats were randomly divided into three groups and were given saline, XZK 1,200 mg/kg or lovastatin 10 mg/kg respectively by daily gavage for 3 days (n=10 for each). Sixteen patients without previous lipid-lowering drug treatment for dyslipidemia received XZK 1,200 mg daily for 8 weeks. Fasting blood samples and liver tissue were collected at day 3 for rats, while the blood samples were obtained at baseline and week 8 from patients. The serum PCSK9 and lipid profile were measured. The expression of hepatic low density lipoprotein (LDL) receptor and sterol regulatory element binding protein 2 (SREBP-2) were measured by real time-PCR.
RESULTSPCSK9 levels in rats were significantly increased in the XZK and lovastatin groups (P=0.002, P=0.003 vs. control) at day 3, while no significant differences were found in the levels of lipid parameters. PCSK9 levels in patients increased by 34% (P=0.006 vs. baseline) accompanied by total cholesterol and LDL-cholesterol decreased by 22% and 28% P=0.001, P=0.002 vs. baseline). The hepatic mRNA levels of LDL-receptor and SREBP-2 were significantly increased in the XZK and lovastatin groups.
CONCLUSIONXZK has significant impact on PCSK9 in a short- and long-term manner in both rats and humans. Moreover, the data indicated that as lovastatin, XZK increased PCSK9 levels through SREBP-2 pathway.
Animals ; Biological Products ; chemistry ; Drugs, Chinese Herbal ; pharmacology ; Female ; Humans ; Lipids ; blood ; Male ; Middle Aged ; Proprotein Convertase 9 ; blood ; Rats, Sprague-Dawley ; Receptors, LDL ; genetics ; metabolism ; Sterol Regulatory Element Binding Protein 2 ; genetics ; metabolism ; Time Factors
7.Regulatory effect of coptisine on key genes involved in cholesterol metabolism.
Biao CHEN ; Dong-fang XUE ; Bing HAN ; Shu-ming KOU ; Xiao-li YE ; Xue-gang LI
China Journal of Chinese Materia Medica 2015;40(8):1548-1553
To study the effect of cholesterol and 25-OH-cholesterol on cholesterol metabolism in HepG2 cells and the effect of coptisine (Cop) extracted from Coptidis Rhizoma (CR) in reducing and regulating cholesterol. In this study, TC, TG, LDL-c and HDL-c were measured by biochemical analysis; mRNA and protein expressions of LDLR, HMGCR and CYP7A1 were detected by qRT-PCR and Western blot. According to the results, cholesterol and 25-OH-cholesterol inducing could decrease in mRNA and protein expressions of LDLR and CYP7A1, so as to increase TC and LDL-c contents. However, Cop could up-regulate mRNA and protein expressions of LDLR and CYP7A1 and down-regulate that of HMGCR, so as to reduce TC and LDL-c levels. These findings suggested that Cop has potential pharmacological activity for reducing cholesterol, and may reduce cholesterol by regulating mRNA and protein expressions of key genes involved in cholesterol metabolism, such as LDLR, CYP7A1 and HMGCR. This study laid a firm theoretical foundation for developing new natural drugs with the cholesterol-lowering activity.
Berberine
;
analogs & derivatives
;
pharmacology
;
Cholesterol
;
metabolism
;
Cholesterol 7-alpha-Hydroxylase
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Hep G2 Cells
;
Humans
;
Hydroxymethylglutaryl CoA Reductases
;
genetics
;
metabolism
;
Receptors, LDL
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
8.Effects of alkaloids from coptidis rhizoma on blood lipid metabolism and low-denstity lipoprotein receptor mRNA in golden hamsters.
Hao WU ; Yan-Zhi WANG ; De-Zhen WANG ; Jie PANG ; Xiao-Li YE ; Xue-Gang LI
China Journal of Chinese Materia Medica 2014;39(11):2102-2105
To study the effects of alkaloids from Coptidis Rhizoma on low-density lipoprotein receptor (LDLR) mRNA expression and antihyperlipedemic levels. The LDLR mRNA expression were detected by real time fluorescence quantitative PCR, and the levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-c) and high-density lipoprotein cholesterol (HDL-c) in serum were measured at the first and last examination. The results show that, after the drug treatment, compared with the model group, each drug group showed a lipid-lowering effect. Especially, coptisine, palmatine, jatrorrhinze were significantly reduced TC, TG, LDL-c (P < 0.05, P < 0.01), and increased HDL-c (P < 0.01). In addition, they also increased mRNA expression of the LDLR in liver and HepG2 cells. The results showed that alkaloids from Coptidis Rhizoma can regulate lipid metabolism disorder, and coptisine have the best lipid-lowering effect.
Alkaloids
;
administration & dosage
;
Animals
;
Cholesterol
;
metabolism
;
Cricetinae
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hyperlipidemias
;
drug therapy
;
genetics
;
metabolism
;
Hypoglycemic Agents
;
administration & dosage
;
Lipid Metabolism
;
drug effects
;
Lipids
;
blood
;
Lipoproteins, LDL
;
metabolism
;
Mesocricetus
;
Receptors, Lipoprotein
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
9.Effect of Antrodia cinnamomea on gene expression related to aortal endothelial injury in rats with hyperlipidemia.
Jie QI ; Yun TAO ; Jun ZHANG ; Jian FU
China Journal of Chinese Materia Medica 2014;39(9):1670-1674
OBJECTIVETo investigate the effect of Antrodia cinnamomea on gene expression related to aortal endothelial injury of rats with hyperlipidemia.
METHODFifty SD rats were randomly divided into five groups: the normal control group (NG), the model group (MG), the antrodia cinnamomea groups of low, middle and high doses (AC-LG, AC-MG, AC-HG, 250, 500, 1 000 mg x kg(-1)). The rats were fed with high-fat diets to establish the hyperlipidemia model. After the drug administration for 10 weeks, their serum lipid, SOD, MDA and ox-LDL, LOX-1, P38 MAPK and NF-kappaB mRNA and protein expression were respectively determined, and the aortal endothelial injury was observed under electron microscope.
RESULTIn the model group, the contents of TC, TG and LDL-C significant increased (P < 0.01), whereas the content of HDL-C significant decreased (P < 0.01). Compared with the model group, both the AC-M group and the AC-H group showed reduction in endothelial injury and significant decrease in the content of TC, TG and LDL-C (P < 0.05 or P < 0.01). The content of HDL-C increased, but with no significant difference. SOD activity in serum remarkably increased (P < 0.05 or P < 0.01), MDA and ox-LDL levels dramatically decreased (P < 0.05 or P < 0.01).
CONCLUSIONA. cinnamomea can alleviate endothelial lipid injury by inhibiting the expressions of LOX-1, P38MAPK and NF-kappaB in aorta and better protect aortal endothelial cells from oxidative lipid injury.
Animals ; Antrodia ; chemistry ; Aorta ; drug effects ; metabolism ; ultrastructure ; Atherosclerosis ; blood ; genetics ; prevention & control ; Biological Products ; pharmacology ; Cholesterol ; blood ; Cholesterol, HDL ; blood ; Cholesterol, LDL ; blood ; Endothelium, Vascular ; drug effects ; metabolism ; pathology ; Enzyme-Linked Immunosorbent Assay ; Gene Expression ; drug effects ; Hyperlipidemias ; blood ; genetics ; prevention & control ; Lipoproteins, LDL ; blood ; Male ; Malondialdehyde ; blood ; Microscopy, Electron ; NF-kappa B ; blood ; genetics ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; Scavenger Receptors, Class E ; blood ; genetics ; metabolism ; Superoxide Dismutase ; blood ; Triglycerides ; blood ; p38 Mitogen-Activated Protein Kinases ; blood ; genetics ; metabolism
10.Thymic stromal lmphopoietin pomotes macrophage-derived foam cell formation.
Da-zhu LI ; Bo-yuan WANG ; Bao-jie YANG ; Shao-lin HE ; Jing LIN ; Jiang-chuan DONG ; Chun WU ; Jun HU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):23-28
The effect of thymic stromal lymphopoietin (TSLP) on macrophage-derived foam cell formation and the underlying mechanism were studied. Macrophages isolated from C57BL/6 mice were co-cultured in vitro with different concentrations of TSLP or TSLPR-antibody in the presence of oxidized low density lipoprotein (ox-LDL). The effects of TSLP on macrophage-derived foam cell formation were observed by using oil red O staining and intracellular lipid determination. The expression levels of foam cell scavenger receptors (CD36 and SRA) as well as ABCA1 and TSLPR were detected by using RT-PCR and Western blotting. As compared with the control group, TSLP treatment significantly promoted lipid accumulation in macrophages, significantly increased protein expression of CD36 and TSLPR in a dose-dependent manner, and significantly reduced the expression of ABCA1 protein in a dose-dependent manner. No significant differences were noted between the TSLPR-antibody group and the control group. TSLP may down-regulate the expression of cholesterol efflux receptor ABCA1 and up-regulate scavenger receptor expression via the TSLPR signaling pathway, thereby promoting macrophage-derived foam cell formation.
ATP Binding Cassette Transporter 1
;
genetics
;
metabolism
;
Animals
;
Antibodies
;
immunology
;
pharmacology
;
Blotting, Western
;
CD36 Antigens
;
genetics
;
metabolism
;
Cells, Cultured
;
Cholesterol
;
metabolism
;
Cholesterol Esters
;
metabolism
;
Cytokines
;
pharmacology
;
Dose-Response Relationship, Drug
;
Foam Cells
;
cytology
;
drug effects
;
metabolism
;
Gene Expression
;
drug effects
;
Immunoglobulins
;
immunology
;
metabolism
;
Lipoproteins, LDL
;
pharmacology
;
Macrophages
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Receptors, Cytokine
;
immunology
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Scavenger Receptors, Class A
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail