1.Single-cell Analysis of CAR-T Cell Activation Reveals A Mixed T1/T2 Response Independent of Differentiation.
Iva XHANGOLLI ; Burak DURA ; GeeHee LEE ; Dongjoo KIM ; Yang XIAO ; Rong FAN
Genomics, Proteomics & Bioinformatics 2019;17(2):129-139
The activation mechanism of chimeric antigen receptor (CAR)-engineered T cells may differ substantially from T cells carrying native T cell receptor, but this difference remains poorly understood. We present the first comprehensive portrait of single-cell level transcriptional and cytokine signatures of anti-CD19/4-1BB/CD28/CD3ζ CAR-T cells upon antigen-specific stimulation. Both CD4 helper T (T) cells and CD8 cytotoxic CAR-T cells are equally effective in directly killing target tumor cells and their cytotoxic activity is associated with the elevation of a range of T1 and T2 signature cytokines, e.g., interferon γ, tumor necrotic factor α, interleukin 5 (IL5), and IL13, as confirmed by the expression of master transcription factor genes TBX21 and GATA3. However, rather than conforming to stringent T1 or T2 subtypes, single-cell analysis reveals that the predominant response is a highly mixed T1/T2 function in the same cell. The regulatory T cell activity, although observed in a small fraction of activated cells, emerges from this hybrid T1/T2 population. Granulocyte-macrophage colony stimulating factor (GM-CSF) is produced from the majority of cells regardless of the polarization states, further contrasting CAR-T to classic T cells. Surprisingly, the cytokine response is minimally associated with differentiation status, although all major differentiation subsets such as naïve, central memory, effector memory, and effector are detected. All these suggest that the activation of CAR-engineered T cells is a canonical process that leads to a highly mixed response combining both type 1 and type 2 cytokines together with GM-CSF, supporting the notion that polyfunctional CAR-T cells correlate with objective response of patients in clinical trials. This work provides new insights into the mechanism of CAR activation and implies the necessity for cellular function assays to characterize the quality of CAR-T infusion products and monitor therapeutic responses in patients.
Antigens
;
metabolism
;
CTLA-4 Antigen
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cytokines
;
metabolism
;
Cytotoxicity, Immunologic
;
drug effects
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
pharmacology
;
Humans
;
Lymphocyte Activation
;
drug effects
;
immunology
;
Lymphocyte Subsets
;
drug effects
;
metabolism
;
Phenotype
;
Proteomics
;
Receptors, Chimeric Antigen
;
metabolism
;
Single-Cell Analysis
;
methods
;
T-Lymphocytes, Regulatory
;
drug effects
;
metabolism
;
Th1 Cells
;
cytology
;
drug effects
;
Th2 Cells
;
cytology
;
drug effects
;
Transcription, Genetic
;
drug effects
;
Up-Regulation
;
drug effects
2.Transcriptomic microarray profiling of peripheral CD4+ T cells from asthmatic patients.
Min ZHU ; Min HE ; Yarong HE ; Yulin JI
Chinese Journal of Medical Genetics 2018;35(6):828-831
OBJECTIVE:
To identify differentially expressed genes in peripheral blood mononuclear cells between patients with continuous mild-to-moderate asthma and healthy controls using mRNA microarray in order to explore the underlying signaling pathways and clarify the roles of CD4+ T cells in the pathogenesis of asthma.
METHODS:
Global transcriptomic profiles of the CD4+ T cells were defined by using Agilent Sure Print G3 Human GE 8×60K microarray. Enrichment pathways were analyzed with Ingenuity Pathway Analysis (IPA) software.
RESULTS:
Compared with controls, 805 genes were up-regulated, 192 were down-regulated in asthma patients. Among these, the expression of 38 annotated genes have varied by 4 times or more. Expression of CD300A was inversely proportional to the absolute value of eosinophils (r=-0.89, P=0.02) as well as the proportion of eosinophils (r=-0.94, P=0.004), while CSF1R was inversely proportional to PD20 (r=-0.83, P=0.04) and AQLQ (r=-0.88, P=0.02) by correlation analysis.
CONCLUSION
Numerous pathophysiological pathways may be involved in the pathogenesis of asthma. Above findings have provided a basis for the delineation the pathogenesis of asthma.
Antigens, CD
;
genetics
;
Asthma
;
immunology
;
CD4-Positive T-Lymphocytes
;
cytology
;
Case-Control Studies
;
Eosinophils
;
Gene Expression Profiling
;
Humans
;
Leukocytes, Mononuclear
;
Oligonucleotide Array Sequence Analysis
;
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
;
genetics
;
Receptors, Immunologic
;
genetics
;
Transcriptome
3.Serum amyloid A inhibits dendritic cell differentiation by suppressing GM-CSF receptor expression and signaling.
Ji Cheol KIM ; Young Su JUNG ; Ha Young LEE ; Joon Seong PARK ; Yoe Sik BAE
Experimental & Molecular Medicine 2017;49(8):e369-
In this study, we report that an acute phase reactant, serum amyloid A (SAA), strongly inhibits dendritic cell differentiation induced by GM-CSF plus IL-4. SAA markedly decreased the expression of MHCII and CD11c. Moreover, SAA decreased cell surface GM-CSF receptor expression. SAA also decreased the expression of PU.1 and C/EBPα, which play roles in the expression of GM-CSF receptor. This inhibitory response by SAA is partly mediated by the well-known SAA receptors, Toll-like receptor 2 and formyl peptide receptor 2. Taken together, we suggest a novel insight into the inhibitory role of SAA in dendritic cell differentiation.
Dendritic Cells*
;
Granulocyte-Macrophage Colony-Stimulating Factor*
;
Interleukin-4
;
Receptors, Formyl Peptide
;
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor*
;
Serum Amyloid A Protein*
;
Toll-Like Receptors
4.Synergistic Effect of Dermatophagoides farinae and Lipopolysaccharides in Human Middle ear Epithelial Cells.
Ji Eun LEE ; Yeon Hoo KIM ; Chae Seo RHEE ; Dong Young KIM
Allergy, Asthma & Immunology Research 2016;8(5):445-456
PURPOSE: Although the concept of "one airway, one disease," which includes the middle ear space as part of the united airway is well recognized, the role of allergens in otitis media with effusion (OME) is not clearly understood. We aimed to investigate the effect of the interaction between Dermatophagoides farinae (Der f) and lipopolysaccharide (LPS) on the induction of epithelial inflammatory response in vitro. METHODS: Primary human middle ear epithelial cells were exposed to Der f, LPS, or both in different sequences, and the magnitude of the immunologic responses was compared. The mRNA expressiona of mucin (MUC) 4, 5AC, 5B, 8, GM-CSF, TNF-α, TLR4, and MD-2 were evaluated using real-time PCR. MUC levels before and after siRNA-mediated knockout of TLR4 and MD-2 were assessed. Lastly, the involved cell signaling pathway was evaluated. RESULTS: The expressiona of cytokines, and the MUC 4, 5AC, 5B, and 8 genes were augmented by pretreatment with Der f followed by LPS; however, reverse treatment or combined treatment did not induce the same magnitude of response. Increased MUC expression was decreased by TLR4 knockdown, but not by MD-2 knockdown. The signal intensity of MUC 8 was higher in MD-2 over-expressed cells than in those exposed to LPS only. The translocation of nuclear factor-κB was observed in cells pretreated with Der f followed by LPS. CONCLUSIONS: When Der f treatment preceded LPS exposure, Der f and LPS acted synergistically in the induction of pro-inflammatory cytokines and the MUC gene, suggesting an important role in the development of OME in patients with concealed allergy airway sensitization.
Allergens
;
Cytokines
;
Dermatophagoides farinae*
;
Ear, Middle*
;
Epithelial Cells*
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Humans*
;
Hypersensitivity
;
Immunity, Innate
;
In Vitro Techniques
;
Lipopolysaccharides*
;
Mucins
;
Otitis Media with Effusion
;
Pyroglyphidae*
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
;
Toll-Like Receptors
5.Inducing Effect of Modified Cytokine Cocktail on Dendritic Cells.
Wei XU ; Bao-Long WANG ; Qiong HUANG ; Zhi-Feng ZHOU ; Peng LUO
Journal of Experimental Hematology 2016;24(1):197-204
OBJECTIVETo investigate the inducing effect of 'modified' cytokine cocktail on the dendritic cell maturation and migration capability.
METHODSPBMNC were isolated from human peripheral blood stem cell (PBSC) by using density gradient centrifugation, the immature DC (imDC) were induced by using GM-CSF and IL-4 in vitro. Total A549 RNA was transfected into imDC by using electroporation, which was stimulated to matuation by the "gold standard" cytokine cocktail and "modified" cytokine cocktail, respectively. The expression of DC surface markers (CD11c, HLA-DR, CD80, CD83 and CD86) and chemokine receptor (CCR5, CCR7 and CXCR4) were detected by flow cytometry; the mRNA expression levels of DC chemokine receptor (CCR2, CCR5, CCR7, CXCR3 and CXCR4) and chemokine (CCL2, CCL3, CCL5, CCL19, CCL21, CXCL10 and CXCL12) were detected by RT-PCR.
RESULTSAs compared with "gold standard cytokine cocktail", the "modified" cytokine cocktail-induced DC expressed higher levels of surface markers (CD11c, HLA-DR, CD80, CD83 and CD86), chemokine receptors (CXCR4) and chemokine (CCL2, CCL3, CCL5, CCL19, CCL21, CXCL10 and CXCL12).
CONCLUSIONThe "modified" cytokine cocktail can more effectively induce the DC maturation, enhace the migratory capability of DC and more generate the immunostimulatory DC, when compared with the "gold standard" cytokine cocktail effect.
Antigens, CD ; metabolism ; Cell Culture Techniques ; Cell Differentiation ; Chemokines ; metabolism ; Cytokines ; pharmacology ; Dendritic Cells ; cytology ; drug effects ; Flow Cytometry ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Humans ; Interleukin-4 ; pharmacology ; Receptors, Chemokine ; metabolism
6.3,3'-Diindolylmethane Inhibits Flt3L/GM-CSF-induced-bone Marrow-derived CD103+ Dendritic Cell Differentiation Regulating Phosphorylation of STAT3 and STAT5.
Joo Hung PARK ; Ah Jeong CHOI ; Soo Ji KIM ; So Yeon JEONG
Immune Network 2015;15(6):278-290
The intestinal immune system maintains oral tolerance to harmless antigens or nutrients. One mechanism of oral tolerance is mediated by regulatory T cell (Treg)s, of which differentiation is regulated by a subset of dendritic cell (DC)s, primarily CD103+ DCs. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, plays an important role in regulating immunity. The intestines are exposed to various AhR ligands, including endogenous metabolites and phytochemicals. It was previously reported that AhR activation induced tolerogenic DCs in mice or in cultures of bone marrow-derived DCs. However, given the variety of tolerogenic DCs, which type of tolerogenic DCs is regulated by AhR remains unknown. In this study, we found that AhR ligand 3,3'-diindolylmethane (DIM) inhibited the development of CD103+ DCs from mouse bone marrow cells stimulated with Flt3L and GM-CSF. DIM interfered with phosphorylation of STAT3 and STAT5 inhibiting the expression of genes, including Id2, E2-2, IDO-1, and Aldh1a2, which are associated with DC differentiation and functions. Finally, DIM suppressed the ability of CD103+ DCs to induce Foxp3+ Tregs.
Animals
;
Bone Marrow Cells
;
Dendritic Cells*
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Immune System
;
Intestines
;
Ligands
;
Mice
;
Phosphorylation*
;
Phytochemicals
;
Receptors, Aryl Hydrocarbon
;
Transcription Factors
7.Combined Treatment with Anticancer Vaccine Using Genetically Modified Endothelial Cells and Imatinib in Bladder Cancer.
Seung Beom HA ; Yong Hyun PARK ; Eunhye LEE ; Ja Hyeon KU ; Hyeon Hoe KIM ; Cheol KWAK
Korean Journal of Urology 2011;52(5):327-334
PURPOSE: We sought to maximize the antitumor effect of an anticancer vaccine based on genetically modified endothelial cells by combining it with the platelet-derived growth factor receptor inhibitor imatinib. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were infected with 10 MOI of Ad-CMV-mGMCSF to make anticancer vaccines. One million mouse bladder cancer cells (MBT-2) were subcutaneously inoculated in C3H mice. The experimental groups included the following: Group 1 (phosphate-buffered saline), Group 2 (anticancer vaccine and GM-CSF), Group 3 (imatinib), and Group 4 (anticancer vaccine, GM-CSF, and imatinib). Tumor growth and body weight were measured weekly. At 4 weeks, the tumors were immunostained with anti-CD31, and microvessel density (MVD) was measured. To evaluate the immunological mechanism of each treatment, flow cytometry analysis of activated CD4 and CD8 cells was performed. RESULTS: At 4 weeks, the mean body weight of each group, excluding the extracted tumor weight, was not significantly different. Since week 3, the mean tumor volume in Group 4 was the smallest among the treatment groups (p<0.05), and a synergistic suppressive effect on tumor volume was observed in Group 4. The MVD in Group 4 was the most suppressed among the treatment groups (p<0.05), and a synergistic anti-angiogenic effect was observed. Flow cytometry analysis revealed that activated CD4+ and CD8+ cells increased in Group 2 and decreased in Group 3 compared with the other groups. CONCLUSIONS: The combination of genetically modified endothelial cell vaccines and imatinib showed a synergistic antiangiogenic effect in bladder cancer.
Animals
;
Benzamides
;
Body Weight
;
Endothelial Cells
;
Flow Cytometry
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Human Umbilical Vein Endothelial Cells
;
Immunotherapy
;
Mice
;
Mice, Inbred C3H
;
Microvessels
;
Piperazines
;
Platelet-Derived Growth Factor
;
Pyrimidines
;
Receptors, Platelet-Derived Growth Factor
;
Tumor Burden
;
Urinary Bladder
;
Urinary Bladder Neoplasms
;
Vaccines
;
Imatinib Mesylate
8.Expression of G-CSF and GM-CSF receptors on CD34 positive cells in aplastic anemia and myelodysplastic syndrome patients and its significance.
Hong-Zhi XU ; Ai LI ; Yuan YU ; Jian-Feng LI ; Xin LIU ; Xiang-Hua WANG ; Xin WANG ; Gong-Li XU
Journal of Experimental Hematology 2008;16(6):1308-1311
This study was aimed to detect the ratio of CD34+ cells in bone marrow mononuclear cells (BMMNCs) and the expression rate of G(M)-CSFR on CD34+ cells in bone marrow of the patients with aplastic anemia (AA) and myelodysplastic syndrome (MDS). The ratio of CD34+ cells in BMMNCs and the expression rate of G(M)-CSFR on cells of 27 AA patients, 45 MDS patients and 20 controls were detected by flow cytometry (FCM). The results showed that the ratio of CD34+ cells in BMMNCs of AA patients reduced and was significantly different from controls (p<0.05), the ratio of CD34+ cells in MDS patients elevated and was significantly different from controls (p<0.05). Compared with controls and MDS-RA patients, the ratio of CD34+ cells in MDS-RAEB patients significantly elevated (p<0.05), but there was no significant difference between MDS-RA patients and controls (p>0.05). The ratio of CD34+ cells in MDS-RA patients was significantly higher than that in AA patients (p<0.05). There was no significant difference in expression rate of G-CSFR on CD34+ cells between AA patients and controls, MDS patients and controls, AA patients and MDS patients, MDS-RA patients and MDS-RAEB patients (p>0.05). The expression rate of GM-CSFR in MDS patients was significantly higher than that in AA patients and controls (p<0.05), but there was no significant difference between AA patients and controls, MDS-RA patients and MDS-RAEB patients (p>0.05). In AA patients, the ratio of CD34+ cells in BMMNCs was less than 0.1% accounts for 6/8 SAA patients, compared with 2/19 in CAA (p<0.05). There was no correlation between the expression rate of either G-CSFR or GM-CSFR and neutrophil count at diagnosis (r=0.058 and r=0.044). In MDS patients, there was no correlation between bone marrow CD34+ cells ratio and peripheral neutrophil count at diagnosis (r=-0.335). And there was no correlation between the expression of either G-CSFR or GM-CSFR and neutrophil count on diagnosis (r=0.064 and r=0.051). It is concluded the detection of CD34+ cells and their surface expression rate of G(M)-CSFR in AA and MDS is useful in diagnosis and differential diagnosis of these two diseases.
Adult
;
Anemia, Aplastic
;
metabolism
;
Antigens, CD34
;
immunology
;
Bone Marrow Cells
;
cytology
;
immunology
;
metabolism
;
Case-Control Studies
;
Female
;
Flow Cytometry
;
Humans
;
Male
;
Middle Aged
;
Myelodysplastic Syndromes
;
metabolism
;
Receptors, Granulocyte Colony-Stimulating Factor
;
metabolism
;
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
;
metabolism
9.Expressions of atherosclerosis-related genes in aorta in young apoE/LDLR double knockout mice.
Xue-Dong DAI ; Miao YIN ; Wen JING ; Hui-Qin DU ; Hong-Yan YE ; Yun-Ju SHANG ; Liang ZHANG ; Yan-Yan ZOU ; Zhi-Ping QU ; Jie PAN
Acta Physiologica Sinica 2008;60(1):43-50
To systematically clarify the effects of apolipoprotein E (aopE) and low-density lipoprotein receptor (LDLR) gene mutant on hyperlipidemia, vascular inflammation impairment and pathogenesis of atherosclerosis (AS), total RNA was isolated from fresh aortas of young apoE/LDLR double knockout (apoE(-/-)/LDLR(-/-)) and wild type (WT) mice using TRIzol reagent. Then RNA was reversely transcribed to first-strand cDNA by reverse transcriptase for reverse transcription polymerase chain reaction (RT-PCR) and real-time RT-PCR. Primer pairs were designed using primer design software according to the gene sequences available in GenBank. β-actin was used as an internal control. Then RT-PCR assay was used to analyze the expression patterns of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), granulocyte-macrophage colony-stimulating factor (GM-CSF), CD36, endothelin-1 (ET-1), toll-like receptor 2 (TLR2), monocyte chemoattractant protein-1 (MCP-1), vascular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and platelet-derived growth factor-α (PDGF-α). SYBR Green quantitative real-time RT-PCR was used to validate gene expressions identified by RT-PCR. Blood samples were taken from the retro-orbital venous plexus, and serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) were measured by using biochemical techniques. Serum concentrations of circulating TNF-α, IL-1β and oxidized LDL (ox-LDL) were determined by ELISA. Frozen sections of aortic sinus were stained with Sudan IV to visualize intimal fatty lesions. The results showed that the relative expressions of IL-1β, GM-CSF, ET-1, TLR2, CD36, MCP-1, ICAM-1 and VCAM-1 in apoE(-/-)/LDLR(-/-) mice at the age of 1 month were higher than those in age-matched WT mice (P<0.05, P<0.01), respectively. The expressions of PDGF-α and TNF-α in apoE(-/-)/LDLR(-/-) mice at the age of 2 months were up-regulated compared to those in age-matched WT mice (P<0.05). All the expressions of target genes continued to be up-regulated (P<0.05, P<0.01) except that ET-1 expression at the age of 2 months, TLR2, VCAM-1 and ICAM-1 expressions at the age of 3 months were down-regulated to that in WT mice. NF-κB expression had no significant changes between two genotype mice at different ages. All the gene expressions kept unchanged in WT mice at different ages, except that IL-1b expressions were slightly up-regulated at the ages of 2 and 3 months. Serum levels of TC, TG, LDL, HDL, TNF-α, IL-1β and ox-LDL in apoE(-/-)/LDLR(-/-) mice at different ages were higher than those in age-matched WT mice (P<0.05, P<0.01), and were increasing with age. Primary atherosclerotic lesions were observed in 1-month old apoE(-/-)/LDLR(-/-) mice and were progressing with age. There were no lesions observed in all WT mice at different ages. The data suggest that hyperlipidemia due to apoE and LDLR gene mutant may stimulate the temporal expressions of AS-related genes and contribute to primary atherogenetic lesions and vascular inflammation impairment.
Animals
;
Aorta
;
metabolism
;
Apolipoproteins E
;
genetics
;
Atherosclerosis
;
genetics
;
CD36 Antigens
;
metabolism
;
Chemokine CCL2
;
metabolism
;
Endothelin-1
;
metabolism
;
Gene Expression
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
metabolism
;
Hyperlipidemias
;
metabolism
;
Intercellular Adhesion Molecule-1
;
metabolism
;
Interleukin-1beta
;
blood
;
metabolism
;
Lipoproteins, LDL
;
blood
;
Mice
;
Mice, Knockout
;
NF-kappa B
;
metabolism
;
Platelet-Derived Growth Factor
;
Receptors, LDL
;
genetics
;
Toll-Like Receptor 2
;
metabolism
;
Tumor Necrosis Factor-alpha
;
blood
;
metabolism
;
Vascular Cell Adhesion Molecule-1
;
metabolism
10.Influence of cryopreservation on leukemic dendritic cells derived from leukemia patients.
You-Zhang HUANG ; Jian-Liang SHEN ; Li-Xin WANG ; Dan XIANG ; Pei-Hao ZHENG ; Jian CEN ; Li-Zhong GONG ; Yi LIU ; Ping-Di YANG
Journal of Experimental Hematology 2007;15(4):873-877
This study was aimed to investigate the influence of cryopreservation on biological properties and function of leukemic dendritic cells (L-DCs) derived from patients with acute or chronic leukemia. Some fresh leukemic cells were detected immediately; some were cultured immediately; some were cryopreserved in -80 degrees C with 5% DMSO-6% HES as cryopreservor. After being thawed, they were cultured. The combination of rhGM-CSF, rhIL-4, rhTNF-alpha and other cytokines were added into the culture system. 12 days later, L-DCs were assayed for morphology, immunophenotype, mixed lymphocytic reaction (MLR) and CTL cytotoxicity on autologous leukemic cells. The results showed that both fresh and cryopreserved leukemic cells obtained from patients with acute or chronic leukemia revealed typical DC morphologically by means of using combinations of cytokines in culture, but there was no significant difference between pre-or post cryopreservations. L-DCs also upregulated the expression of CD80, CD54, HLA-DR, CD1a, CD83 and CD86, and downregulated the expression of CD14, but there was also no difference as compared with L-DCs befor cryopreservation. L-DCs derived from leukemic cells were also capable of stimulating MLR and inducing CTL which could kill autologous leukemic cells obviously. It is concluded that leukemic cells, regardless of fresh or frozen, can induce L-DCs after culture with cytokine combination. The L-DCs can induce CTL targeting autologous leukemic cells, and may be used to treat MRD as immunotherapy. The induction and biological properties of L-DCs are not influenced by cryopreservation.
Bone Marrow Cells
;
cytology
;
CD8 Antigens
;
metabolism
;
Cryopreservation
;
Dendritic Cells
;
cytology
;
immunology
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
pharmacology
;
Humans
;
Interleukin-4
;
pharmacology
;
Leukemia, Myeloid
;
immunology
;
pathology
;
Lipopolysaccharide Receptors
;
metabolism
;
Lymphocyte Activation
;
Recombinant Proteins
;
T-Lymphocytes, Cytotoxic
;
immunology
;
Tumor Cells, Cultured
;
Tumor Necrosis Factor-alpha
;
pharmacology

Result Analysis
Print
Save
E-mail