1.Kir2.1 Channel Regulation of Glycinergic Transmission Selectively Contributes to Dynamic Mechanical Allodynia in a Mouse Model of Spared Nerve Injury.
Yiqian SHI ; Yangyang CHEN ; Yun WANG
Neuroscience Bulletin 2019;35(2):301-314
Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brush-evoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1 (Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury (SNI). Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in naïve but also in ML133-pretreated mice. In contrast, bicuculline, a GABA receptor antagonist, induced only punctate, but not dynamic, allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents (gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration or acute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively. In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.
Animals
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Glycine
;
metabolism
;
Hyperalgesia
;
drug therapy
;
etiology
;
metabolism
;
Imidazoles
;
pharmacology
;
Inhibitory Postsynaptic Potentials
;
drug effects
;
physiology
;
Male
;
Mice, Inbred C57BL
;
Neurons
;
drug effects
;
metabolism
;
Neurotransmitter Agents
;
pharmacology
;
Peripheral Nerve Injuries
;
drug therapy
;
metabolism
;
Phenanthrolines
;
pharmacology
;
Potassium Channels, Inwardly Rectifying
;
antagonists & inhibitors
;
metabolism
;
Receptors, GABA-A
;
metabolism
;
Receptors, Glycine
;
metabolism
;
Strychnine
;
pharmacology
;
Synaptic Transmission
;
drug effects
;
physiology
;
Tissue Culture Techniques
;
Touch
2.Differential expression of spinal γ-aminobutyric acid and opioid receptors modulates the analgesic effects of intrathecal curcumin on postoperative/inflammatory pain in rats
Jin JU ; Ji Yun SHIN ; Jae Joon YOON ; Mei YIN ; Myung Ha YOON
Anesthesia and Pain Medicine 2018;13(1):82-92
BACKGROUND: Curcumin is traditionally used as an herbal medicine. We explored the efficacy of intrathecal curcumin in relieving both postoperative and inflammatory pain and elucidated the mechanisms of action of curcumin interacting with γ-aminobutyric acid (GABA) and opioid receptors at the spinal level. METHODS: Experimental pain was induced in male Sprague-Dawley rats via paw incision or injection of intraplantar carrageenan. After examination of the effects of intrathecal curcumin on the pain, GABA and opioid receptor antagonists were intrathecally administered to explore the involvement of GABA or opioid receptors on the effect of curcumin. Additionally, the expression levels of the GABA and opioid receptors were assessed. RESULTS: Intrathecal curcumin reduced the withdrawal threshold of both incisional surgery- and carrageenan injection-induced nociception. Intrathecal GABA and opioid receptor antagonists reversed the curcumin-mediated antinociception. Incisional surgery decreased the levels of the GABA receptors mRNA, but little changed the levels of the opioid receptors mRNA. Carrageenan injection increased the levels of the opioid receptors mRNA, but not the GABA receptors mRNA levels. Intrathecal curcumin increased or decreased the levels of GABA receptors mRNA and opioid receptors mRNA in the spinal cords of incised or carrageenan-injected rats, respectively. CONCLUSIONS: Intrathecal curcumin was effective to postoperative and inflammatory pain and such antinociception of curcumin was antagonized by both GABA and opioid receptor antagonists. Also, intrathecal curcumin altered the levels of GABA and opioid receptors. Thus, spinal GABA and opioid receptors may, respectively, be directly or indirectly involved when curcumin alleviates postoperative and inflammatory pain.
Animals
;
Carrageenan
;
Curcumin
;
gamma-Aminobutyric Acid
;
Herbal Medicine
;
Humans
;
Male
;
Narcotic Antagonists
;
Nociception
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, GABA
;
Receptors, Opioid
;
RNA, Messenger
;
Spinal Cord
3.Assessment of Switching to Suvorexant versus the Use of Add-on Suvorexant in Combination with Benzodiazepine Receptor Agonists in Insomnia Patients: A Retrospective Study.
Masakazu HATANO ; Hiroyuki KAMEI ; Risa INAGAKI ; Haruna MATSUZAKI ; Manako HANYA ; Shigeki YAMADA ; Nakao IWATA
Clinical Psychopharmacology and Neuroscience 2018;16(2):184-189
OBJECTIVE: Suvorexant is a novel hypnotic drug that does not interact with the conventional γ-aminobutyric acid (GABA)-A receptor. We investigated the method by which suvorexant was introduced in insomnia patients who were taking benzodiazepine receptor agonists (BzRA). METHODS: This was a retrospective study. We extracted clinical data for patients who were prescribed suvorexant and were already using BzRA. The patients were assigned to two groups, the switching and add-on groups. We assessed the suvorexant discontinuation rate at one month after the prescription of the drug. RESULTS: One hundred and nineteen patients were assigned to the switching group, and 109 were assigned to the add-on group. The add-on group exhibited a significantly higher all-cause discontinuation rate than the switching group (odds ratio, 2.7; 95% confidence interval, 1.5 to 5.0; adjusted p < 0.001). Intolerability was a significantly stronger risk factor for suvorexant discontinuation in the add-on group (22.0% vs. 7.6%, p < 0.002), and the most common adverse effect was oversedation. CONCLUSION: Our results show that the add-on of suvorexant increases the frequency of oversedation compared with switching in insomnia patients that are taking BzRA. However, this was only a preliminary retrospective study, and further studies will be required to confirm our findings.
Benzodiazepines*
;
Humans
;
Methods
;
Orexin Receptor Antagonists
;
Prescriptions
;
Receptors, GABA-A*
;
Retrospective Studies*
;
Risk Factors
;
Sleep Initiation and Maintenance Disorders*
4.GABA Receptor Activity Suppresses the Transition from Inter-ictal to Ictal Epileptiform Discharges in Juvenile Mouse Hippocampus.
Yan-Yan CHANG ; Xin-Wei GONG ; Hai-Qing GONG ; Pei-Ji LIANG ; Pu-Ming ZHANG ; Qin-Chi LU
Neuroscience Bulletin 2018;34(6):1007-1016
Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 μmol/L of the GABA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 μmol/L muscimol abolished all the epileptiform discharges. When the GABA receptor antagonist bicuculline was applied at 10 μmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.
Animals
;
Animals, Newborn
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Epilepsy
;
pathology
;
GABA-A Receptor Agonists
;
pharmacology
;
GABA-A Receptor Antagonists
;
therapeutic use
;
Hippocampus
;
drug effects
;
metabolism
;
physiopathology
;
In Vitro Techniques
;
Magnesium
;
metabolism
;
pharmacology
;
Male
;
Membrane Potentials
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Muscimol
;
pharmacology
;
Nerve Net
;
drug effects
;
Receptors, GABA-A
;
metabolism
5.Inhibitory effects of propofol on excitatory synaptic transmission in supraoptic nucleus neurons in vitro.
Huan-Huan ZHANG ; Chao ZHENG ; Bang-An WANG ; Meng-Ya WANG
Acta Physiologica Sinica 2015;67(6):583-590
The present study was designed to investigate the inhibitory effects of intravenous general anesthetic propofol (0.1-3.0 mmol/L) on excitatory synaptic transmission in supraoptic nucleus (SON) neurons of rats, and to explore the underlying mechanisms by using intracellular recording technique and hypothalamic slice preparation. It was observed that stimulation of the dorsolateral region of SON could elicit the postsynaptic potentials (PSPs) in SON neurons. Of the 8 tested SON neurons, the PSPs of 7 (88%, 7/8) neurons were decreased by propofol in a concentration-dependent manner, in terms of the PSPs' amplitude (P < 0.01), area under curve, duration, half-width and 10%-90% decay time (P < 0.05). The PSPs were completely and reversibly abolished by 1.0 mmol/L propofol at 2 out of 7 tested cells. The depolarization responses induced by pressure ejection of exogenous glutamate were reversibly and concentration-dependently decreased by bath application of propofol. The PSPs and glutamate-induced responses recorded simultaneously were reversibly and concentration-dependently decreased by propofol, but 0.3 mmol/L propofol only abolished PSPs. The excitatory postsynaptic potentials (EPSPs) of 7 cells increased in the condition of picrotoxin (30 µmol/L, a GABA(A) receptor antagonist) pretreatment. On this basis, the inhibitory effects of propofol on EPSPs were decreased. These data indicate that the presynaptic and postsynaptic mechanisms may be both involved in the inhibitory effects of propofol on excitatory synaptic transmission in SON neurons. The inhibitory effects of propofol on excitatory synaptic transmission of SON neurons may be related to the activation of GABA(A) receptors, but at a high concentration, propofol may also act directly on glutamate receptors.
Anesthetics, Intravenous
;
pharmacology
;
Animals
;
Excitatory Postsynaptic Potentials
;
drug effects
;
GABA-A Receptor Antagonists
;
pharmacology
;
Glutamic Acid
;
pharmacology
;
In Vitro Techniques
;
Neurons
;
drug effects
;
Propofol
;
pharmacology
;
Rats
;
Receptors, Glutamate
;
metabolism
;
Supraoptic Nucleus
;
cytology
6.Rosuvastatin attenuates mucus secretion in a murine model of chronic asthma by inhibiting the gamma-aminobutyric acid type A receptor.
Tao ZHU ; Wei ZHANG ; Dao-xin WANG ; Ni-wen HUANG ; Hong BO ; Wang DENG ; Jia DENG
Chinese Medical Journal 2012;125(8):1457-1464
BACKGROUNDAsthma is a chronic inflammatory disease characterized by reversible bronchial constriction, pulmonary inflammation and airway remodeling. Current standard therapies for asthma provide symptomatic control, but fail to target the underlying disease pathology. Furthermore, no therapeutic agent is effective in preventing airway remodeling. A substantial amount of evidence suggests that statins have anti-inflammatory properties and immunomodulatory activity. In this study, we investigated the effect of rosuvastatin on airway inflammation and its inhibitory mechanism in mucus hypersecretion in a murine model of chronic asthma.
METHODSBALB/c mice were sensitized and challenged by ovalbumin to induce asthma. The recruitment of inflammatory cells into bronchoalveolar lavage fluid (BALF) and the lung tissues were measured by Diff-Quik staining and hematoxylin and eosin (H&E) staining. ELISA was used for measuring the levels of IL-4, IL-5, IL-13 and TNF-α in BALF. Periodic acid-Schiff (PAS) staining was used for mucus secretion. Gamma-aminobutyric acid type A receptor (GABAAR) β2 expression was measured by means of immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.
RESULTSRosuvastatin reduced the number of total inflammatory cells, lymphocytes, macrophages, neutrophils, and eosinophils recruited into BALF, the levels of IL-4, IL-5, IL-13 and TNF-α in BALF, along with the histological mucus index (HMI) and GABAAR β2 expression. Changes occurred in a dose-dependent manner.
CONCLUSIONSBased on its ability to reduce the inflammatory response and mucus hypersecretion by regulating GABAAR activity in a murine model of chronic asthma, rosuvastatin may be a useful therapeutic agent for treatment of asthma.
Animals ; Asthma ; drug therapy ; metabolism ; Chronic Disease ; Disease Models, Animal ; Female ; Fluorobenzenes ; pharmacology ; therapeutic use ; GABA-A Receptor Antagonists ; pharmacology ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; Lung ; chemistry ; Mice ; Mice, Inbred BALB C ; Mucus ; secretion ; Pyrimidines ; pharmacology ; therapeutic use ; Receptors, GABA-A ; analysis ; Rosuvastatin Calcium ; Sulfonamides ; pharmacology ; therapeutic use
7.Effects of neuroactive steroid allopregnanolone on the damage of cortical neurons.
Xian-Hui LI ; Xin-Chang ZHANG ; Gang WANG ; Hai-Ling LIU ; Shi-Hai XIA
Chinese Journal of Applied Physiology 2011;27(2):175-178
OBJECTIVETo investigate the protective mechanism of neuroactive steroid allopregnanolone on N-methyl-D-aspartate (NMDA) induced toxicity in primary mouse cortical neurons.
METHODSPrimary cultured mouse cortical neurons were subjected to allopregnanolone, the expression of beta-aminobutyric acid receptor beta2 subunit (beta2-GABA-R) mRNAs was detected by RT-PCR and Akt phosphorylation was assayed by Western blot using Akt-phosphoserine 473-specific antibody. After the cultured mouse cortical neurons were pretreated with or without allopregnanolone prior to treatment with NMDA , DNA isolated was analyzed by agarose gel electrophoresis and proteins collected were analyzed by Western blot with anti-cleaved-PARP, anti-cleaved caspase-3, and anti-cleaved caspase-9 antibodies.
RESULTSWhen cultured mouse cortical neurons were exposed to allopregnanolone both the expression of beta2-GABA-R mRNAs and Akt phosphorylation increased. Allopregnanolone inhibited the NMDA-induced apoptosis and decreased the level of active-PARP, active-caspase-3 and active-caspase-9 notably at a final concentration of 5 x 10(6) mol/L.
CONCLUSIONPretreatment with allopregnanolone may be neuroprotective on NMDA-induced neuronal cells apoptosis by increasing beta2-GABA-R expression and Akt phosphorylation.
Animals ; Animals, Newborn ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cerebral Cortex ; cytology ; Mice ; N-Methylaspartate ; antagonists & inhibitors ; toxicity ; Neurons ; cytology ; Neuroprotective Agents ; pharmacology ; Poly (ADP-Ribose) Polymerase-1 ; Poly(ADP-ribose) Polymerases ; metabolism ; Pregnanolone ; pharmacology ; Primary Cell Culture ; RNA, Messenger ; genetics ; metabolism ; Receptors, GABA-B ; genetics ; metabolism
8.The influence of GABAA receptor on the analgesic action of intrathecally injected oxysophoridine.
Guang YANG ; Jin-xian GAO ; Zheng-hong YI ; Lin YAN ; Yuan-Xu JIANG
Acta Pharmaceutica Sinica 2011;46(5):534-538
.This study is to investigate the analgesic effect produced by intrathecal injection (ith) of oxysophoridine (OSR) and the mechanism of GABAA receptor. Warm water tail-flick test was used to detect the analgesic effect of OSR (12.5, 6.25, and 3.13 mg.kg-1 ith) and to observe the influence of GABA (gamma aminobutyric acid) agonist or antagonist on the analgesic effect of OSR in mice. Immunohistochemistry method were used to detect the influence of OSR (12.5 mg.kg-1, ith) on the GABAARalpha1 protein expression in spinal cord. The results obtained covers that OSR (12.5 and 6.25 mg.kg-, ith) alleviates pain significantly with the warm water tail-flick test (P<0.05, P<0.01), the rate of pain threshold increases by 68.45%; GABA and muscimol (MUS) produces analgesic synergism together with the OSR, picrotoxin (PTX) and bicuculline (BIC) antagonize the analgesic effect of OSR; OSR (12.5 mg.kg-1, ith) significantly increase the positive number of GABAARalpha1 nerve cell in spinal cord (P<0.01) and significantly decrease the average grey levels (P<0.01). In conclusion, OSR intrathecal injection has significant analgesic effect. And GABAA receptor in spinal cord is involved in the analgesic mechanism.
Alkaloids
;
administration & dosage
;
pharmacology
;
Analgesics
;
administration & dosage
;
pharmacology
;
Animals
;
Bicuculline
;
pharmacology
;
Female
;
GABA-A Receptor Agonists
;
pharmacology
;
GABA-A Receptor Antagonists
;
pharmacology
;
Injections, Spinal
;
Male
;
Mice
;
Muscimol
;
pharmacology
;
Pain Threshold
;
drug effects
;
Picrotoxin
;
pharmacology
;
Random Allocation
;
Receptors, GABA-A
;
metabolism
;
Spinal Cord
;
metabolism
;
gamma-Aminobutyric Acid
;
pharmacology
9.Effect of Sildenafil on Neuropathic Pain and Hemodynamics in Rats.
Lan Ji HUANG ; Myung Ha YOON ; Jeong Il CHOI ; Woong Mo KIM ; Hyung Gon LEE ; Yeo Ok KIM
Yonsei Medical Journal 2010;51(1):82-87
PURPOSE: The inhibition of phosphodiesterase 5 produces an antinociception through the increase of cyclic guanosine monophosphate (cGMP), and increasing cGMP levels enhance the release of gamma-aminobutyric acid (GABA). Furthermore, this phosphodiesterase 5 plays a pivotal role in the regulation of the vasodilatation associated to cGMP. In this work, we examined the contribution of GABA receptors to the effect of sildenafil, a phosphodiesterase 5 inhibitor, in a neuropathic pain rat, and assessed the hemodynamic effect of sildenafil in normal rats. MATERIALS AND METHODS: Neuropathic pain was induced by ligation of L5/6 spinal nerves in Sprague-Dawley male rats. After observing the effect of intravenous sildenafil on neuropathic pain, GABAA receptor antagonist (bicuculline) and GABAB receptor antagonist (saclofen) were administered prior to delivery of sildenafil to determine the role of GABA receptors in the activity of sildenafil. For hemodynamic measurements, catheters were inserted into the tail artery. Mean arterial pressure (MAP) and heart rate (HR) were measured over 60 min following administration of sildenafil. RESULTS: Intravenous sildenafil dose-dependently increased the withdrawal threshold to the von Frey filament application in the ligated paw. Intravenous bicuculline and saclofen reversed the antinociception of sildenafil. Intravenous sildenafil increased the magnitude of MAP reduction at the maximal dosage, but it did not affect HR response. CONCLUSION: These results suggest that sildenafil is active in causing neuropathic pain. Both GABAA and GABAB receptors are involved in the antinociceptive effect of sildenafil. Additionally, intravenous sildenafil reduces MAP without affecting HR.
Animals
;
Baclofen/analogs & derivatives/pharmacology
;
Bicuculline/pharmacology
;
Blood Pressure/drug effects
;
Dose-Response Relationship, Drug
;
Heart Rate/drug effects
;
Hemodynamics/drug effects
;
Male
;
Neuralgia/*drug therapy
;
Pain Threshold/drug effects
;
Phosphodiesterase Inhibitors/*therapeutic use
;
Piperazines/*therapeutic use
;
Purines/therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, GABA-A/antagonists & inhibitors/physiology
;
Receptors, GABA-B/antagonists & inhibitors/physiology
;
Sulfones/*therapeutic use
10.The Effect of Androsterone as the Metabolite of Testosterone to Seizure Suppression.
Won Joo KIM ; Soo Yeon LEE ; Kyung Joo CHO ; Byung In LEE
Journal of the Korean Neurological Association 2009;27(2):142-146
BACKGROUND: Androsterone is one of the major metabolites from testosterone whose clinical importance remains unclear. This study evaluated the effects of androsterone on seizure susceptibility in mouse models of epilepsy. METHODS: The efficacy of androsterone (10~200 mg/kg, i.p.) against seizures induced by various GABA receptor antagonists and glutamate receptor agonists was evaluated. RESULTS: Androsterone protected mice against seizures induced by PTZ (pentylenetetrazol), PCX (picrotoxin), and DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) in a dose-dependent manner. Androsterone did not protect against seizures induced by kainic acid, NMDA (N-methyl-D-aspartic acid), or 4-AP (4-aminopyridine) in mice. CONCLUSIONS: These results suggest that androsterone exhibits anticonvulsant activity that occurs largely via nongenomic mechanisms. Testosterone-derived androsterone might be an endogenous protective neuroactive steroid in the brain.
Androsterone
;
Animals
;
Carbolines
;
Epilepsy
;
GABA Antagonists
;
gamma-Aminobutyric Acid
;
Kainic Acid
;
Mice
;
N-Methylaspartate
;
Receptors, Glutamate
;
Seizures
;
Testosterone

Result Analysis
Print
Save
E-mail