1.Development and optimization of a cell screening system for farnesoid X receptor agonist.
Zhimin ZHENG ; Xiaoxia HUANG ; Biying PANG ; Nana HUANG ; Bo KONG ; Xin LI ; Wenting XIONG
Chinese Journal of Biotechnology 2023;39(1):359-371
This study aims to develop an improved cell screening system for farnesoid X receptor (FXR) agonists based on a dual luciferase reporter gene system. FXR response element (FXRE) fragments from FXR target genes were cloned and inserted into upstream of firefly luciferase (Luc) gene in the plasmid pGL4-luc2P-Hygro. In combination with the internal reference plasmid containing renilla luciferase, a dual luciferase reporter gene system was developed and used for high throughput screening of FXR agonists. After studying the effects of over-expression of RXR, mouse or human FXR, various FXRE fragments, and different ratio of FXR plasmid amount to reporter gene plasmid, induction efficiency of the screening system was optimized by the known FXR agonist GW4064, and Z factor for the system reached 0.83 under optimized conditions. In summary, an improved cell screening system based on double luciferase reporter gene detection system was developed to facilitate the discovery of FXR agonists, where a new enhanced FXRE element was formed by a superposition of multiple FXRE fragments from FXR target genes, instead of a superposition of traditional IR-1 (inverted repeats-1) fragments.
Humans
;
Mice
;
Animals
;
Transcription Factors/genetics*
;
DNA-Binding Proteins/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Genes, Reporter
;
Luciferases/genetics*
2.The role of nuclear receptor transcription factor NR2F6 in tumor.
Ling HUANG ; Jiahui LIU ; Yi ZHU ; Quan ZHOU ; Bin XIAO ; Zhaohui SUN ; Linhai LI
Chinese Journal of Biotechnology 2021;37(8):2595-2602
Nuclear receptor subfamily 2, group F, member 6 (NR2F6) is a member of orphan nuclear receptors, which is expressed in major tissues and organs of the human body, and plays an important role in the regulation of various biological functions and gene expressions. Recent studies have shown that the expression of NR2F6 was up-regulated in a variety of malignant tumors and showed significant correlations with cancer progression. These findings triggered the widespread interest in understanding the relationship between NR2F6 and cancer development and progression. In addition, the latest studies have underscored that NR2F6 was involved in enhancing antitumor immune responses that could serve as a potential target for immune regulation. This review summarizes the biological functions of NR2F6 and its role in tumors, with the aim to provide new insights into effective cancer therapies.
Gene Expression Regulation
;
Humans
;
Neoplasms/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Repressor Proteins/genetics*
;
Transcription Factors/genetics*
3.Farnesoid X receptor (FXR) inhibits coagulation process via inducing hepatic antithrombin III expression in mice.
Zhi-Lin LUAN ; Yuan-Yi WEI ; Yuan-Chen WANG ; Wen-Hua MING ; Hai-Bo ZHANG ; Bing WANG ; Xiao-Hui CUI ; Yu-Yuan LI ; You-Fei GUAN ; Xiao-Yan ZHANG
Acta Physiologica Sinica 2021;73(5):795-804
Farnesoid X receptor (FXR) has been identified as an inhibitor of platelet function and an inducer of fibrinogen protein complex. However, the regulatory mechanism of FXR in hemostatic system remains incompletely understood. In this study, we aimed to investigate the functions of FXR in regulating antithrombin III (AT III). C57BL/6 mice and FXR knockout (FXR KO) mice were treated with or without GW4064 (30 mg/kg per day). FXR activation significantly prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), lowered activity of activated factor X (FXa) and concentrations of thrombin-antithrombin complex (TAT) and activated factor II (FIIa), and increased level of AT III, whereas all of these effects were markedly reversed in FXR KO mice. In vivo, hepatic AT III mRNA and protein expression levels were up-regulated in wild-type mice after FXR activation, but down-regulated in FXR KO mice. In vitro study showed that FXR activation induced, while FXR knockdown inhibited, AT III expression in mouse primary hepatocytes. The luciferase assay and ChIP assay revealed that FXR can bind to the promoter region of AT III gene where FXR activation increased AT III transcription. These results suggest FXR activation inhibits coagulation process via inducing hepatic AT III expression in mice. The present study reveals a new role of FXR in hemostatic homeostasis and indicates that FXR might act as a potential therapeutic target for diseases related to hypercoagulation.
Animals
;
Antithrombin III
;
Blood Coagulation
;
Hepatocytes
;
Liver
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Receptors, Cytoplasmic and Nuclear/genetics*
4.Analysis of LBR gene mutation in a pedigree affected with Pelger-Huёt anomaly.
Xiaocheng LUO ; Qin XU ; Ling HUANG ; Nannan YANG ; Yuanyuan LI ; Qiangwu ZENG ; Bangquan AN ; Shengwen HUANG
Chinese Journal of Medical Genetics 2019;36(9):905-909
OBJECTIVE:
To detect mutation of LBR gene in a pedigree affected with Pelger-Huёt anomaly (PHA) and to explore its clinical characteristics.
METHODS:
Genomic DNA was extracted from the pedigree and healthy controls. The 14 exons of the LBR gene were subjected to PCR amplification and Sanger sequencing. Suspected mutations were verified in other family members and 100 healthy controls. Polyphen-2 and SIFT software were used to predict the effect of the mutation, and Swiss-model software was used to simulate the protein structure.
RESULTS:
Three patients were found to carry a c.893G>A mutation in exon 8 of the LBR gene, which resulted in substitution of the 298th amino acid residue glycine by glutamic acid (p.Gly298Glu). The same mutation was not found in healthy family members and 100 healthy controls. The mutation was predicted to be damaging. Bioinformatic simulation showed the mutation has altered the 3D structure of the LBR protein.
CONCLUSION
The c.893G>A (p.Gly298Glu) mutation in the LBR gene probably underlies the PHA in this pedigree and has enriched the spectrum of LBR gene mutations.
Case-Control Studies
;
DNA Mutational Analysis
;
Exons
;
Humans
;
Mutation
;
Pedigree
;
Pelger-Huet Anomaly
;
genetics
;
Polymerase Chain Reaction
;
Receptors, Cytoplasmic and Nuclear
;
genetics
5.Hypolipidemic effect of SIPI-7623, a derivative of an extract from oriental wormwood, through farnesoid X receptor antagonism.
Yi-Fang DENG ; Xiao-Ling HUANG ; Mei SU ; Peng-Xia YU ; Zhen ZHANG ; Quan-Hai LIU ; Guo-Ping WANG ; Min-Yu LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):572-579
Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. As a metabolic regulator, FXR plays key roles in bile acid and cholesterol metabolism and lipid and glucose homeostasis. Therefore, FXR is a potential drug target for several metabolic syndromes, especially those related to lipidemia disorders. In the present study, we identified small molecule SIPI-7623, a derivative of an extract from Oriental wormwood (Artemisia capillaris), and found that it specifically upregulated the expression of cholesterol-7-alpha-hydroxylase (CYP7A1), downregulated the expression of sterol-regulatory element-binding protein 1c (SREBP-1c) in the liver, and inhibited the expression of ileal bile acid binding-protein (IBABP) in the ileum of rats. We found that inhibition of FXR by SIPI-7623 decreased the level of cholesterol and triglyceride. SIPI-7623 reduced the levels of cholesterol and triglyceride in in vitro HepG2 cell models, ameliorated diet-induced atherosclerosis, and decreased the serum lipid content on rats and rabbits model of atherosclerosis in vivo. Furthermore, SIPI-7623 decreased the extent of atherosclerotic lesions. Our resutls demonstrated that antagonism of the FXR pathway can be employed as a therapeutic strategy to treat metabolic diseases such as hyperlipidemia and atherosclerosis. In conclusion, SIPI-7623 could be a promising lead compound for development of drugs to treat hyperlipidemia and atherosclerosis.
Animals
;
Artemisia
;
chemistry
;
Atherosclerosis
;
drug therapy
;
genetics
;
metabolism
;
Cholesterol
;
metabolism
;
Cholesterol 7-alpha-Hydroxylase
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hyperlipidemias
;
drug therapy
;
genetics
;
metabolism
;
Hypolipidemic Agents
;
administration & dosage
;
Liver
;
drug effects
;
metabolism
;
Male
;
Rabbits
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cytoplasmic and Nuclear
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Sterol Regulatory Element Binding Protein 1
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
6.Nr2e1 Downregulation Is Involved in Excess Retinoic Acid-induced Developmental Abnormality in the Mouse Brain.
Juan YU ; Qian GUO ; Jian Bing MU ; Ting ZHANG ; Ren Ke LI ; Jun XIE
Biomedical and Environmental Sciences 2017;30(3):185-193
OBJECTIVEThis study aimed to investigate the expression pattern and function of Nuclear receptor subfamily 2 group E member 1 (Nr2e1) in retinoic acid (RA)-induced brain abnormality.
METHODSThe mouse model of brain abnormality was established by administering 28 mg/kg RA, and neural stem cells (NSCs) were isolated from the mouse embryo and cultured in vitro. Nr2e1 expression was detected by whole mount in situ hybridization, RT-PCR, and Western blotting. Nr2e1 function was determined by transducing Nr2e1 shRNA into NSCs, and the effect on the sonic hedgehog (Shh) signaling pathway was assessed in the cells. In addition, the regulation of Nr2e1 expression by RA was also determined in vitro.
RESULTSNr2e1 expression was significantly downregulated in the brain and NSCs of RA-treated mouse embryos, and knockdown of Nr2e1 affected the proliferation of NSCs in vitro. In addition, a similar expression pattern of Nr2e1 and RA receptor (RAR) α was observed after treatment of NSCs with different concentrations of RA.
CONCLUSIONOur study demonstrated that Nr2e1 could be regulated by RA, which would aid a better understanding of the mechanism underlying RA-induced brain abnormality.
Animals ; Brain ; cytology ; embryology ; Cell Proliferation ; Down-Regulation ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; drug effects ; Mice ; Mice, Inbred C57BL ; Neural Stem Cells ; drug effects ; physiology ; Receptors, Cytoplasmic and Nuclear ; genetics ; metabolism ; Tretinoin ; pharmacology
7.Antifibrotic effect of total flavonoids of Astmgali Radix on dimethylnitrosamine-induced liver cirrhosis in rats.
Yang CHENG ; Jing-Yin MAI ; Mei-Feng WANG ; Gao-Feng CHEN ; Jian PING
Chinese journal of integrative medicine 2017;23(1):48-54
OBJECTIVETo study the effect of total flavonoids of Astmgali Radix (TFA) on liver cirrhosis induced with dimethylnitrosamine (DMN) in rats, and the effect on peroxisome proliferator-activated receptor γ (PPARγ), uncoupling protein 2 (UCP2) and farnesoid X receptor (FXR).
METHODSFifty-three Sprague-Dawley rats were randomly divided into a control group (10 rats) and a DMN group (43 rats). Rats in the DMN group were given DMN for 4 weeks and divided randomly into a model group (14 rats), a low-dosage TFA group (14 rats) and a high-dosage TFA group (15 rats) in the 3rd week. Rats were given TFA for 4 weeks at the dosage of 15 and 30 mg/kg in the low- and high-TFA groups, respectively. At the end of the experiment blood and liver samples were collected. Serum liver function and liver tissue hydroxyproline content were determined. hematoxylin-eosin (HE), Sirus red and immunohistochemical stainings of collagen I, smooth muscle actin (α-SMA) was conducted in paraffinembedded liver tissue slices. Real time polymerase chain reaction (PCR) was adopted to determine PPARγ, UCP2 and FXR mRNA levels. Western blot was adopted to determine protein levels of collagen I, α-SMA, PPARγ, UCP2 and FXR.
RESULTSCompared with the model group, TFA increased the ratio of liver/body weight (low-TFA group P<0.05, high-TFA group P<0.01), improved liver biochemical indices (P<0.01 for ALT, AST, GGT in both groups, P<0.05 for albumin and TBil in the high-TFA group) and reduced liver tissue hydroxproline content (P<0.01 in both groups) in treatment groups significantly. HE staining showed that TFA alleviated liver pathological changes markedly and Sirus red staining showed that TFA reduced collagen deposition, alleviated formation and extent of liver pseudolobule. Collagen I and α-SMA immunohistochemical staining showed that staining area and extent markedly decreased in TFA groups compared with the model group. TFA could increase PPARγ, it regulated target UCP2, and FXR levels significantly compared with the model group (in the low-TFA group all P<0.05, in the high group all P<0.01).
CONCLUSIONTFA could improve liver function, alleviate liver pathological changes, and reduce collagen deposition and formation of liver pseudolobule in rats with liver cirrhosis. The antifibrotic effect of TFA was through regulating PPARγ signal pathway and the interaction with FXR.
Actins ; metabolism ; Animals ; Blotting, Western ; Body Weight ; drug effects ; Collagen Type I ; metabolism ; Dimethylnitrosamine ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Flavonoids ; pharmacology ; therapeutic use ; Hydroxyproline ; metabolism ; Liver ; drug effects ; pathology ; Liver Cirrhosis ; blood ; drug therapy ; genetics ; pathology ; Male ; Organ Size ; drug effects ; PPAR gamma ; genetics ; metabolism ; Plant Extracts ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Receptors, Cytoplasmic and Nuclear ; genetics ; metabolism ; Uncoupling Protein 2 ; genetics ; metabolism
8.IFN-γ secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism.
Jin-Peng DU ; Geng WANG ; Chao-Jie HU ; Qing-Bo WANG ; Hui-Qing LI ; Wen-Fang XIA ; Xiao-Ming SHUAI ; Kai-Xiong TAO ; Guo-Bin WANG ; Ze-Feng XIA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):377-382
Vertical sleeve gastrectomy (VSG) is becoming more and more popular among the world. Despite its dramatic efficacy, however, the mechanism of VSG remains largely undetermined. This study aimed to test interferon (IFN)-γ secretion n of mesenteric lymph nodes in obese mice (ob/ob mice), a model of VSG, and its relationship with farnesoid X receptor (FXR) expression in the liver and small intestine, and to investigate the weight loss mechanism of VSG. The wild type (WT) mice and ob/ob mice were divided into four groups: A (WT+Sham), B (WT+VSG), C (ob/ob+Sham), and D (ob/ob+VSG). Body weight values were monitored. The IFN-γ expression in mesenteric lymph nodes of ob/ob mice pre- and post-operation was detected by flow cytometry (FCM). The FXR expression in the liver and small intestine was detected by Western blotting. The mouse AML-12 liver cells were stimulated with IFN-γ at different concentrations in vitro. The changes of FXR expression were also examined. The results showed that the body weight of ob/ob mice was significantly declined from (40.6±2.7) g to (27.5±3.8) g on the 30th day after VSG (P<0.05). At the same time, VSG induced a higher level secretion of IFN-γ in mesenteric lymph nodes of ob/ob mice than that pre-operation (P<0.05). The FXR expression levels in the liver and small intestine after VSG were respectively 0.97±0.07 and 0.84±0.07 fold of GAPDH, which were significantly higher than pre-operative levels of 0.50±0.06 and 0.48±0.06 respectively (P<0.05). After the stimulation of AML-12 liver cells in vitro by different concentrations of IFN-γ (0, 10, 25, 50, 100, and 200 ng/mL), the relative FXR expression levels were 0.22±0.04, 0.31±0.04, 0.39±0.05, 0.38±0.05, 0.56±0.06, and 0.35±0.05, respectively, suggesting IFN-γ could distinctly promote the FXR expression in a dose-dependent manner in comparison to those cells without IFN-γ stimulation (P<0.05). It was concluded that VSG induces a weight loss in ob/ob mice by increasing IFN-γ secretion of mesenteric lymph nodes, which then increases the FXR expression of the liver and small intestine.
Animals
;
Body Weight
;
Cell Line
;
Gastrectomy
;
methods
;
Gene Expression
;
Hepatocytes
;
cytology
;
drug effects
;
metabolism
;
Interferon-gamma
;
biosynthesis
;
pharmacology
;
secretion
;
Intestine, Small
;
drug effects
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Lymph Nodes
;
drug effects
;
metabolism
;
Mesentery
;
drug effects
;
metabolism
;
Mice
;
Mice, Obese
;
Obesity
;
metabolism
;
pathology
;
surgery
;
Receptors, Cytoplasmic and Nuclear
;
agonists
;
genetics
;
metabolism
;
Weight Loss
9.Study on inhibitory effect of calycosin on hepatic stellate cell activation in rats by up-regulating peroxisome proliferator-activated receptor γ.
Jian PING ; Hong-yun CHEN ; Yang ZHOU ; Gao-feng CHEN ; Lie-ming XU ; Yang CHENG
China Journal of Chinese Materia Medica 2015;40(12):2383-2388
To observe the effect of calycosin on the proliferation and activation of primary hepatic stellate cells (HSCs) in rats, and prove calycosin shows the effects through peroxisome proliferator-activated receptor γ(PPARγ) and farnesoid X receptor (FXR). The results indicated that calycosin could inhibit HSC proliferation and expressions of activation marker smooth muscle actin-α and type I collagen. With the increase in HSC activation time, FXR expression reduced, but with no notable impact from calycosin. Calycosin could up-regulate PPARγ expression and its nuclear transition in a concentration-dependent manner. Its prohibitory effect on HSC activation could be blocked by PPARγ antagonist. In conclusion, calycosin could inhibit HSC activation and proliferation, which may be related with the up-regulation of PPARγ signal pathway.
Animals
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
pharmacology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Isoflavones
;
pharmacology
;
Male
;
PPAR gamma
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
Up-Regulation
;
drug effects
10.Abnormal expression of PEX10 gene may be related to epilepsy associated with 1p36 copy number variations.
Yanan ZHANG ; Fang XU ; Yueqiu TAN ; Jiancheng HU ; Hua WANG
Chinese Journal of Medical Genetics 2015;32(1):6-10
OBJECTIVETo assess the association of PEX10 gene and 1p36 copy number variations in 1p36 region with concurrent epilepsy through analyzing 3 cases.
METHODSThe karyotypes of 3 patients were determined by high resolution chromosome banding, multiplex ligation dependent probe amplification (MLPA), fluorescence in situ hybridization (FISH) combined with single nucleotide polymorphism array (SNP) technology. Real-time PCR was carried out to determine the mRNA levels of PEX10 gene in peripheral blood of the patients.
RESULTSNo abnormality was found upon high resolution karyotyping. MLPA analysis showed that all of the 3 patients had a copy number variation of subtelomeric region in the short arm of chromosome 1, which was confirmed by FISH and SNP chip analyses. Case 1 and case 2 both had an epilepsy phenotype, and their copy number variations have encompassed the PEX10 gene. On the other hand, case 3 has absent epilepsy, and its PEX10 gene copy number was normal. Family investigation confirmed that the chromosome abnormalities in all of the 3 cases were of de novo type. Compared with healthy controls, real-time PCR showed that mRNA of the PEX10 gene was increased in case 1 but decreased in case 2.
CONCLUSIONThe abnormal expression of PEX10 gene resulting from copy number variations of 1p36 region may be associated with the epilepsy phenotype.
Child ; Chromosomes, Human, Pair 1 ; DNA Copy Number Variations ; Epilepsy ; genetics ; Female ; Humans ; Peroxins ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide ; Receptors, Cytoplasmic and Nuclear ; genetics

Result Analysis
Print
Save
E-mail